{"title":"Study on solar radiation transfer model of double skin façade with spray aerosol","authors":"Yanjin Wang, Fangfang Wang, Jintao Xiong","doi":"10.1016/j.ijthermalsci.2025.109875","DOIUrl":null,"url":null,"abstract":"<div><div>Spraying droplets into the cavity of the double skin façade can improve its thermal performance. However, the spray system is opened, the mist droplets (aerosols) dispersed in the cavity alter the transmission mechanism of solar radiation through the double skin façade. This study develops a solar radiation transfer model for double skin facade with spray aerosol based on the Mie scattering theory and the net radiation method. The model calculates the transmittance, reflectance, and absorptance of the double skin façade with spray aerosol. Experimental validation shows good agreement with the model, with a maximum error of approximately 11.2 % for solar heat gain. Additionally, this study examines key factors that influence the optical properties of the double skin facade with spray aerosol, including aerosol particle number concentration, average radius, cavity distance, and incidence angle. The results indicate that total transmittance decreases as aerosol concentration and average radius increase. However, when the concentration exceeds 600 particles/cm<sup>3</sup> and the average radius exceeds 15 μm, the reduction in transmittance becomes less pronounced. Changes in cavity distance and incidence angle have a minimal effect on transmittance at high aerosol concentrations. By controlling aerosol concentration and average radius, solar heat gain can be effectively reduced. The model accurately describes solar radiation transmission in real conditions, helping assess the optical and thermal properties of double skin façades with spray aerosol.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"214 ","pages":"Article 109875"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129007292500198X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Study on solar radiation transfer model of double skin façade with spray aerosol
Spraying droplets into the cavity of the double skin façade can improve its thermal performance. However, the spray system is opened, the mist droplets (aerosols) dispersed in the cavity alter the transmission mechanism of solar radiation through the double skin façade. This study develops a solar radiation transfer model for double skin facade with spray aerosol based on the Mie scattering theory and the net radiation method. The model calculates the transmittance, reflectance, and absorptance of the double skin façade with spray aerosol. Experimental validation shows good agreement with the model, with a maximum error of approximately 11.2 % for solar heat gain. Additionally, this study examines key factors that influence the optical properties of the double skin facade with spray aerosol, including aerosol particle number concentration, average radius, cavity distance, and incidence angle. The results indicate that total transmittance decreases as aerosol concentration and average radius increase. However, when the concentration exceeds 600 particles/cm3 and the average radius exceeds 15 μm, the reduction in transmittance becomes less pronounced. Changes in cavity distance and incidence angle have a minimal effect on transmittance at high aerosol concentrations. By controlling aerosol concentration and average radius, solar heat gain can be effectively reduced. The model accurately describes solar radiation transmission in real conditions, helping assess the optical and thermal properties of double skin façades with spray aerosol.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.