{"title":"Design Study of a Compact Injector for a Synchrotron Light Source","authors":"Daniele Francescone;Paolo Craievich;Marcos Gaspar;Thomas Geoffrey Lucas;Andrea Mostacci;Riccardo Zennaro","doi":"10.1109/TNS.2025.3538576","DOIUrl":null,"url":null,"abstract":"Synchrotron light sources are commonly fed with 100-MeV normal conducting linear accelerators powered by a dc thermionic electron gun for high current applications. Such systems are robust solutions for electron sources; however, they tend to have complex bunching systems that increase the complexity and overall cost. In this work, we propose an approach where nonrelativistic bunches are directly injected into a relativistic accelerating structure that is detuned from the optimal frequency. This detuning causes a phase jump, enabling the achievement of beam parameters, such as transmission and energy spread, comparable to those obtained with conventional multistructure bunching systems. The proposed solution simplifies the longitudinal beam dynamics and avoids the need for complex bunching systems. The simplicity and reduced size of this design make the proposed solution interesting for compact electron sources. The article proposes, as an example, a possible upgrade of the Swiss Light Source (SLS) 100-MeV injection linac.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 3","pages":"774-780"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10870325/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design Study of a Compact Injector for a Synchrotron Light Source
Synchrotron light sources are commonly fed with 100-MeV normal conducting linear accelerators powered by a dc thermionic electron gun for high current applications. Such systems are robust solutions for electron sources; however, they tend to have complex bunching systems that increase the complexity and overall cost. In this work, we propose an approach where nonrelativistic bunches are directly injected into a relativistic accelerating structure that is detuned from the optimal frequency. This detuning causes a phase jump, enabling the achievement of beam parameters, such as transmission and energy spread, comparable to those obtained with conventional multistructure bunching systems. The proposed solution simplifies the longitudinal beam dynamics and avoids the need for complex bunching systems. The simplicity and reduced size of this design make the proposed solution interesting for compact electron sources. The article proposes, as an example, a possible upgrade of the Swiss Light Source (SLS) 100-MeV injection linac.
期刊介绍:
The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years.
The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.