改进风电一体化电力系统尾部精度的基于点估计的概率负荷流修正方法

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Vikas Singh, Tukaram Moger, Debashisha Jena
{"title":"改进风电一体化电力系统尾部精度的基于点估计的概率负荷流修正方法","authors":"Vikas Singh,&nbsp;Tukaram Moger,&nbsp;Debashisha Jena","doi":"10.1016/j.epsr.2025.111606","DOIUrl":null,"url":null,"abstract":"<div><div>Modern power systems confront risks, including demand variations and forced outages of traditional generators. Moreover, the extensive grid integration of new energy generation has exacerbated the uncertainty because of its intermittent nature. The Hong’s three-point estimation method (3PEM) for performing probabilistic load flow (PLF) is commonly used to cope with power system uncertainties; however, it has poor tail accuracy. To overcome this issue, the basic 3PEM is modified by adding a new pair of tail points. This modified 3PEM (MH3PEM) is equivalent to 5PEM but utilize reduced order moments. Also, a hybrid Hong-Harr PEM approach is proposed to efficiently deal with a mixture of independent and correlated input variables. The input variables’ correlation is modeled using the Nataf transformation. The proposed approaches are tested on wind farm-integrated 24-bus and 72-bus equivalent systems, and their findings are compared with the fundamental PEM schemes. Utilizing the Monte-Carlo simulation as a reference, the MH3PEM provides the most accurate results with a low computational burden.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"245 ","pages":"Article 111606"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified point estimate-based probabilistic load flow approach for improving tail accuracy in wind-integrated power systems\",\"authors\":\"Vikas Singh,&nbsp;Tukaram Moger,&nbsp;Debashisha Jena\",\"doi\":\"10.1016/j.epsr.2025.111606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modern power systems confront risks, including demand variations and forced outages of traditional generators. Moreover, the extensive grid integration of new energy generation has exacerbated the uncertainty because of its intermittent nature. The Hong’s three-point estimation method (3PEM) for performing probabilistic load flow (PLF) is commonly used to cope with power system uncertainties; however, it has poor tail accuracy. To overcome this issue, the basic 3PEM is modified by adding a new pair of tail points. This modified 3PEM (MH3PEM) is equivalent to 5PEM but utilize reduced order moments. Also, a hybrid Hong-Harr PEM approach is proposed to efficiently deal with a mixture of independent and correlated input variables. The input variables’ correlation is modeled using the Nataf transformation. The proposed approaches are tested on wind farm-integrated 24-bus and 72-bus equivalent systems, and their findings are compared with the fundamental PEM schemes. Utilizing the Monte-Carlo simulation as a reference, the MH3PEM provides the most accurate results with a low computational burden.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"245 \",\"pages\":\"Article 111606\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779625001981\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779625001981","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified point estimate-based probabilistic load flow approach for improving tail accuracy in wind-integrated power systems
Modern power systems confront risks, including demand variations and forced outages of traditional generators. Moreover, the extensive grid integration of new energy generation has exacerbated the uncertainty because of its intermittent nature. The Hong’s three-point estimation method (3PEM) for performing probabilistic load flow (PLF) is commonly used to cope with power system uncertainties; however, it has poor tail accuracy. To overcome this issue, the basic 3PEM is modified by adding a new pair of tail points. This modified 3PEM (MH3PEM) is equivalent to 5PEM but utilize reduced order moments. Also, a hybrid Hong-Harr PEM approach is proposed to efficiently deal with a mixture of independent and correlated input variables. The input variables’ correlation is modeled using the Nataf transformation. The proposed approaches are tested on wind farm-integrated 24-bus and 72-bus equivalent systems, and their findings are compared with the fundamental PEM schemes. Utilizing the Monte-Carlo simulation as a reference, the MH3PEM provides the most accurate results with a low computational burden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electric Power Systems Research
Electric Power Systems Research 工程技术-工程:电子与电气
CiteScore
7.50
自引率
17.90%
发文量
963
审稿时长
3.8 months
期刊介绍: Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview. • Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation. • Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design. • Substation work: equipment design, protection and control systems. • Distribution techniques, equipment development, and smart grids. • The utilization area from energy efficiency to distributed load levelling techniques. • Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信