IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cihat Güleryüz , Abrar U. Hassan , Hasan Güleryüz , Hussein A.K. Kyhoiesh , Mohamed H.H. Mahmoud
{"title":"A machine learning assisted designing and chemical space generation of benzophenone based organic semiconductors with low lying LUMO energies","authors":"Cihat Güleryüz ,&nbsp;Abrar U. Hassan ,&nbsp;Hasan Güleryüz ,&nbsp;Hussein A.K. Kyhoiesh ,&nbsp;Mohamed H.H. Mahmoud","doi":"10.1016/j.mseb.2025.118212","DOIUrl":null,"url":null,"abstract":"<div><div>Current study presents a machine learning (<em>ML</em>) approach to design benzophenone-based organic chromophore with their lowest possible LUMO energy (<em>E<sub>LUMO</sub></em>). A dataset of their 1142 donors is collected from literature and their molecular descriptors are designed by using RDKit. Among various models, the Random Forest regression model produces accurate results to predict their <em>E<sub>LUMO</sub></em> values. Based on these predictions, their 5000 new donors are designed with their Synthetic Accessibility Likelihood Index (<em>SALI</em>) scores. Their <em>SHAP</em> value analysis reveals that their electro topological state indices are the most critical descriptors to lowering <em>E<sub>LUMOs</sub></em>. The top-performing donor are further extended with acceptors and their photovoltaic (<em>PV</em>) properties by density functional theory (DFT). Their results show their maximum open-circuit voltage (<em>V<sub>oc</sub></em>) of 2.30 V, a short-circuit current (<em>J<sub>sc</sub></em>) of 47.19 mA/cm<sup>2</sup>, and a light-harvesting efficiency (LHE) of 93 %. This study demonstrates the potential of <em>ML</em> assisted design to design new organic chromophores.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"317 ","pages":"Article 118212"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725002351","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种机器学习(ML)方法,用于设计二苯甲酮类有机发色团,使其具有最低的 LUMO 能量(ELUMO)。我们从文献中收集了 1142 个供体的数据集,并使用 RDKit 设计了它们的分子描述符。在各种模型中,随机森林回归模型能准确预测它们的 ELUMO 值。根据这些预测结果,利用它们的合成可及性似然指数(SALI)得分设计出了 5000 个新的供体。其 SHAP 值分析表明,它们的电拓扑状态指数是降低 ELUMO 的最关键描述指标。通过密度泛函理论(DFT),进一步扩展了表现最佳的供体与受体及其光伏(PV)特性。研究结果表明,它们的最大开路电压(Voc)为 2.30 V,短路电流(Jsc)为 47.19 mA/cm2,光收集效率(LHE)为 93%。这项研究证明了 ML 辅助设计在设计新型有机发色团方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning assisted designing and chemical space generation of benzophenone based organic semiconductors with low lying LUMO energies
Current study presents a machine learning (ML) approach to design benzophenone-based organic chromophore with their lowest possible LUMO energy (ELUMO). A dataset of their 1142 donors is collected from literature and their molecular descriptors are designed by using RDKit. Among various models, the Random Forest regression model produces accurate results to predict their ELUMO values. Based on these predictions, their 5000 new donors are designed with their Synthetic Accessibility Likelihood Index (SALI) scores. Their SHAP value analysis reveals that their electro topological state indices are the most critical descriptors to lowering ELUMOs. The top-performing donor are further extended with acceptors and their photovoltaic (PV) properties by density functional theory (DFT). Their results show their maximum open-circuit voltage (Voc) of 2.30 V, a short-circuit current (Jsc) of 47.19 mA/cm2, and a light-harvesting efficiency (LHE) of 93 %. This study demonstrates the potential of ML assisted design to design new organic chromophores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信