Guodong Jia , Xu Yvon Zhang , François Chabaux , Eric Pelt , Zhiqi Zhao , Sheng Xu , Congqiang Liu
{"title":"海南岛热带花岗质风化层产量的定量研究:多阶段u系列不平衡研究","authors":"Guodong Jia , Xu Yvon Zhang , François Chabaux , Eric Pelt , Zhiqi Zhao , Sheng Xu , Congqiang Liu","doi":"10.1016/j.gsf.2025.102002","DOIUrl":null,"url":null,"abstract":"<div><div>Regolith, widely distributed on the Earth’s surface, constitutes a significant compartment of the Critical Zone, resulting from intricate interactions among the atmosphere, lithosphere, hydrosphere, and biosphere. Regolith formation critically influences nutrient release, soil production, and long-term climate regulation. Regolith development is governed by two primary processes: production and denudation. An urgent need exists to comprehensively understand these processes to refine our understanding of Critical Zone functions. This study investigates an in-situ regolith profile developed on granitic bedrock from a tropical region (Sanya, China). We conducted geochemical analyses, encompassing major, trace elements and mineralogical compositions as well as U-series isotopes, and applied the U-series disequilibrium method to investigate the formation history of this profile. Alternatively, dividing the regolith profile into sub-weathering zones provides a better explanation for the geochemical results, and a multi-stage model based on this subdivision effectively interprets the evolution of deep regolith. Utilizing this multi-stage model, regolith production rates is derived from the “gain and loss” model, ranging from 1.27 ± 0.03 to 42.42 ± 24.24 m/Ma. The production rates first increase from surface until a maximum rate is reached at the depth of ∼ 160 cm and then decrease at further deeper horizons along the depth profile, and the variation of production rates follows a so-called “humped function”. This pioneering investigation into regolith production rates in the Chinese tropical region indicates that (1) the studied profile deviates from a steady state compared to the denudation rate derived from cosmogenic nuclides (<sup>10</sup>Be_in-situ); (2) subdividing the deep profile based on geochemical data and U-series isotopic activity ratios is imperative for accurately determining regolith production rates; and (3) the combination of U-series disequilibrium and cosmogenic nuclides robustly evaluates the quantitative evolution state of regolith over long time scales.</div></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"16 3","pages":"Article 102002"},"PeriodicalIF":8.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying production rates of tropical granitic regolith in Hainan Island, south China: A multi-stage U-series disequilibrium study\",\"authors\":\"Guodong Jia , Xu Yvon Zhang , François Chabaux , Eric Pelt , Zhiqi Zhao , Sheng Xu , Congqiang Liu\",\"doi\":\"10.1016/j.gsf.2025.102002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Regolith, widely distributed on the Earth’s surface, constitutes a significant compartment of the Critical Zone, resulting from intricate interactions among the atmosphere, lithosphere, hydrosphere, and biosphere. Regolith formation critically influences nutrient release, soil production, and long-term climate regulation. Regolith development is governed by two primary processes: production and denudation. An urgent need exists to comprehensively understand these processes to refine our understanding of Critical Zone functions. This study investigates an in-situ regolith profile developed on granitic bedrock from a tropical region (Sanya, China). We conducted geochemical analyses, encompassing major, trace elements and mineralogical compositions as well as U-series isotopes, and applied the U-series disequilibrium method to investigate the formation history of this profile. Alternatively, dividing the regolith profile into sub-weathering zones provides a better explanation for the geochemical results, and a multi-stage model based on this subdivision effectively interprets the evolution of deep regolith. Utilizing this multi-stage model, regolith production rates is derived from the “gain and loss” model, ranging from 1.27 ± 0.03 to 42.42 ± 24.24 m/Ma. The production rates first increase from surface until a maximum rate is reached at the depth of ∼ 160 cm and then decrease at further deeper horizons along the depth profile, and the variation of production rates follows a so-called “humped function”. This pioneering investigation into regolith production rates in the Chinese tropical region indicates that (1) the studied profile deviates from a steady state compared to the denudation rate derived from cosmogenic nuclides (<sup>10</sup>Be_in-situ); (2) subdividing the deep profile based on geochemical data and U-series isotopic activity ratios is imperative for accurately determining regolith production rates; and (3) the combination of U-series disequilibrium and cosmogenic nuclides robustly evaluates the quantitative evolution state of regolith over long time scales.</div></div>\",\"PeriodicalId\":12711,\"journal\":{\"name\":\"Geoscience frontiers\",\"volume\":\"16 3\",\"pages\":\"Article 102002\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience frontiers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674987125000027\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987125000027","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantifying production rates of tropical granitic regolith in Hainan Island, south China: A multi-stage U-series disequilibrium study
Regolith, widely distributed on the Earth’s surface, constitutes a significant compartment of the Critical Zone, resulting from intricate interactions among the atmosphere, lithosphere, hydrosphere, and biosphere. Regolith formation critically influences nutrient release, soil production, and long-term climate regulation. Regolith development is governed by two primary processes: production and denudation. An urgent need exists to comprehensively understand these processes to refine our understanding of Critical Zone functions. This study investigates an in-situ regolith profile developed on granitic bedrock from a tropical region (Sanya, China). We conducted geochemical analyses, encompassing major, trace elements and mineralogical compositions as well as U-series isotopes, and applied the U-series disequilibrium method to investigate the formation history of this profile. Alternatively, dividing the regolith profile into sub-weathering zones provides a better explanation for the geochemical results, and a multi-stage model based on this subdivision effectively interprets the evolution of deep regolith. Utilizing this multi-stage model, regolith production rates is derived from the “gain and loss” model, ranging from 1.27 ± 0.03 to 42.42 ± 24.24 m/Ma. The production rates first increase from surface until a maximum rate is reached at the depth of ∼ 160 cm and then decrease at further deeper horizons along the depth profile, and the variation of production rates follows a so-called “humped function”. This pioneering investigation into regolith production rates in the Chinese tropical region indicates that (1) the studied profile deviates from a steady state compared to the denudation rate derived from cosmogenic nuclides (10Be_in-situ); (2) subdividing the deep profile based on geochemical data and U-series isotopic activity ratios is imperative for accurately determining regolith production rates; and (3) the combination of U-series disequilibrium and cosmogenic nuclides robustly evaluates the quantitative evolution state of regolith over long time scales.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.