基于不平衡机器学习的地面站沙尘暴检测

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shikang Du , Siyu Chen , Shanling Cheng , Jiaqi He , Dan Zhao , Xusheng Zhu , Lulu Lian , Xingxing Tu , Qinghong Zhao , Yue Zhang
{"title":"基于不平衡机器学习的地面站沙尘暴检测","authors":"Shikang Du ,&nbsp;Siyu Chen ,&nbsp;Shanling Cheng ,&nbsp;Jiaqi He ,&nbsp;Dan Zhao ,&nbsp;Xusheng Zhu ,&nbsp;Lulu Lian ,&nbsp;Xingxing Tu ,&nbsp;Qinghong Zhao ,&nbsp;Yue Zhang","doi":"10.1016/j.envsoft.2025.106420","DOIUrl":null,"url":null,"abstract":"<div><div>Dust storms, common meteorological hazard in arid and semi-arid regions, have significant environmental and societal impacts. Rapid and accurate detecting dust storms is critical for early warning systems. Over the past few decades, dust storm detection primarily relied on satellite remote sensing techniques using multi-channel imagery, but these methods have limitations in temporal resolution. With the recent expansion of China's observation network, the dense distribution of ground-based sensors offers a promising data source for real-time dust storm detection. This study proposes a machine learning approach to detect dust storms using ground-based sensor networks. By combining undersampling strategies and ensemble algorithms, this method improves model's performance in detecting dust storms. Compared with the state-of-the-art models, this approach improves the Recall rates for different dust storm levels by 24.32% and the G-Mean by 18.58%, achieving superior dust storm detection performance. This approach can offer the near-real-time, hourly updated dust storm detection products.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106420"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dust storm detection for ground-based stations with imbalanced machine learning\",\"authors\":\"Shikang Du ,&nbsp;Siyu Chen ,&nbsp;Shanling Cheng ,&nbsp;Jiaqi He ,&nbsp;Dan Zhao ,&nbsp;Xusheng Zhu ,&nbsp;Lulu Lian ,&nbsp;Xingxing Tu ,&nbsp;Qinghong Zhao ,&nbsp;Yue Zhang\",\"doi\":\"10.1016/j.envsoft.2025.106420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dust storms, common meteorological hazard in arid and semi-arid regions, have significant environmental and societal impacts. Rapid and accurate detecting dust storms is critical for early warning systems. Over the past few decades, dust storm detection primarily relied on satellite remote sensing techniques using multi-channel imagery, but these methods have limitations in temporal resolution. With the recent expansion of China's observation network, the dense distribution of ground-based sensors offers a promising data source for real-time dust storm detection. This study proposes a machine learning approach to detect dust storms using ground-based sensor networks. By combining undersampling strategies and ensemble algorithms, this method improves model's performance in detecting dust storms. Compared with the state-of-the-art models, this approach improves the Recall rates for different dust storm levels by 24.32% and the G-Mean by 18.58%, achieving superior dust storm detection performance. This approach can offer the near-real-time, hourly updated dust storm detection products.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"188 \",\"pages\":\"Article 106420\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225001045\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001045","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

沙尘暴是干旱半干旱地区常见的气象灾害,具有重大的环境和社会影响。快速准确地探测沙尘暴对早期预警系统至关重要。在过去的几十年里,沙尘暴的探测主要依靠多通道卫星遥感技术,但这些方法在时间分辨率上存在局限性。随着中国观测网络的不断扩大,地面传感器的密集分布为实时沙尘暴探测提供了一个有前景的数据源。本研究提出了一种利用地面传感器网络检测沙尘暴的机器学习方法。该方法将欠采样策略与集成算法相结合,提高了模型对沙尘暴的检测性能。与现有模型相比,该方法对不同沙尘暴水平的召回率提高了24.32%,G-Mean提高了18.58%,达到了更好的沙尘暴检测性能。这种方法可以提供接近实时的、每小时更新的沙尘暴探测产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dust storm detection for ground-based stations with imbalanced machine learning

Dust storm detection for ground-based stations with imbalanced machine learning
Dust storms, common meteorological hazard in arid and semi-arid regions, have significant environmental and societal impacts. Rapid and accurate detecting dust storms is critical for early warning systems. Over the past few decades, dust storm detection primarily relied on satellite remote sensing techniques using multi-channel imagery, but these methods have limitations in temporal resolution. With the recent expansion of China's observation network, the dense distribution of ground-based sensors offers a promising data source for real-time dust storm detection. This study proposes a machine learning approach to detect dust storms using ground-based sensor networks. By combining undersampling strategies and ensemble algorithms, this method improves model's performance in detecting dust storms. Compared with the state-of-the-art models, this approach improves the Recall rates for different dust storm levels by 24.32% and the G-Mean by 18.58%, achieving superior dust storm detection performance. This approach can offer the near-real-time, hourly updated dust storm detection products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信