作为光催化应用的高活性异质结构的 Pd-TiO2 核壳纳米粒子的光学特性理论研究

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Mohammed Alsawafta, Chawki Awada
{"title":"作为光催化应用的高活性异质结构的 Pd-TiO2 核壳纳米粒子的光学特性理论研究","authors":"Mohammed Alsawafta,&nbsp;Chawki Awada","doi":"10.1016/j.micrna.2025.208148","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of TiO<sub>2</sub> shell on both the optical response and associated nearfield intensity of a spherical Pd core has been investigated theoretically by employing the Finite-Difference Time-Domain (FDTD) simulation tool. By devoting the concept of the effective dielectric medium, a theoretical analysis is introduced to provide a better understanding of how combined materials (shell material and host medium) can impact the spectral response of the core-shell nanoparticles and the correlated sensing capability. From the results of the numerical simulations, it is found that the sensing competence of the considered core-shell system is decreased significantly with increasing the shell thickness (t). This implies that a thicker shell acts as a shield, allowing the complex dielectric function of the TiO<sub>2</sub> to dominate the resonance condition and progressively reducing the influence of the surrounding host matrix on the resonance phenomenon. Additionally, independent of the material types, the current study provides a scaling model to properly connect the impact of both the shell thickness and the core size (r) to the related sensing performance, such that t/r should be smaller than a factor of two for the successful usage of such nanoparticles for sensing applications. The current findings provide some detailed guidelines to properly and accurately design plasmon-based sensing platforms constructed from heterogeneous core-shell nanostructures.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"203 ","pages":"Article 208148"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical study on the optical properties of a Pd–TiO2 core-shell nanoparticle as a highly active heterogeneous structure for photocatalytic applications\",\"authors\":\"Mohammed Alsawafta,&nbsp;Chawki Awada\",\"doi\":\"10.1016/j.micrna.2025.208148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The influence of TiO<sub>2</sub> shell on both the optical response and associated nearfield intensity of a spherical Pd core has been investigated theoretically by employing the Finite-Difference Time-Domain (FDTD) simulation tool. By devoting the concept of the effective dielectric medium, a theoretical analysis is introduced to provide a better understanding of how combined materials (shell material and host medium) can impact the spectral response of the core-shell nanoparticles and the correlated sensing capability. From the results of the numerical simulations, it is found that the sensing competence of the considered core-shell system is decreased significantly with increasing the shell thickness (t). This implies that a thicker shell acts as a shield, allowing the complex dielectric function of the TiO<sub>2</sub> to dominate the resonance condition and progressively reducing the influence of the surrounding host matrix on the resonance phenomenon. Additionally, independent of the material types, the current study provides a scaling model to properly connect the impact of both the shell thickness and the core size (r) to the related sensing performance, such that t/r should be smaller than a factor of two for the successful usage of such nanoparticles for sensing applications. The current findings provide some detailed guidelines to properly and accurately design plasmon-based sensing platforms constructed from heterogeneous core-shell nanostructures.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"203 \",\"pages\":\"Article 208148\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325000779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical study on the optical properties of a Pd–TiO2 core-shell nanoparticle as a highly active heterogeneous structure for photocatalytic applications

Theoretical study on the optical properties of a Pd–TiO2 core-shell nanoparticle as a highly active heterogeneous structure for photocatalytic applications
The influence of TiO2 shell on both the optical response and associated nearfield intensity of a spherical Pd core has been investigated theoretically by employing the Finite-Difference Time-Domain (FDTD) simulation tool. By devoting the concept of the effective dielectric medium, a theoretical analysis is introduced to provide a better understanding of how combined materials (shell material and host medium) can impact the spectral response of the core-shell nanoparticles and the correlated sensing capability. From the results of the numerical simulations, it is found that the sensing competence of the considered core-shell system is decreased significantly with increasing the shell thickness (t). This implies that a thicker shell acts as a shield, allowing the complex dielectric function of the TiO2 to dominate the resonance condition and progressively reducing the influence of the surrounding host matrix on the resonance phenomenon. Additionally, independent of the material types, the current study provides a scaling model to properly connect the impact of both the shell thickness and the core size (r) to the related sensing performance, such that t/r should be smaller than a factor of two for the successful usage of such nanoparticles for sensing applications. The current findings provide some detailed guidelines to properly and accurately design plasmon-based sensing platforms constructed from heterogeneous core-shell nanostructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信