扩散贻贝-藻类模型相互作用的分析动力学

Q1 Mathematics
Muhammad Jawaz , Muhammad Shahzad , Nauman Ahmed , Muhammad Zafarullah Baber , Muhammad Iqbal , Ali Akgül
{"title":"扩散贻贝-藻类模型相互作用的分析动力学","authors":"Muhammad Jawaz ,&nbsp;Muhammad Shahzad ,&nbsp;Nauman Ahmed ,&nbsp;Muhammad Zafarullah Baber ,&nbsp;Muhammad Iqbal ,&nbsp;Ali Akgül","doi":"10.1016/j.padiff.2025.101151","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines the diffusive mussel–algae model and explores soliton solutions and wave structures using advanced analytical techniques, particularly the new auxiliary equation method. The proposed method reveals a variety of solution types, including hyperbolic, parabolic, and mixed forms. These closed-form results provide the nature of the current problem. These solutions are validated against known results and numerical simulations. Additionally, we describe two-dimensional and three-dimensional graphical representations of the solutions, illustrating their spatial and temporal dynamics. This study enhances the theoretical understanding of mussel algae interactions and offers practical insights for eco-logical management, showcasing the contributions of the approach to resolving complex ecological dynamics</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101151"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical dynamics to the interactions of a diffusive mussel–algae model\",\"authors\":\"Muhammad Jawaz ,&nbsp;Muhammad Shahzad ,&nbsp;Nauman Ahmed ,&nbsp;Muhammad Zafarullah Baber ,&nbsp;Muhammad Iqbal ,&nbsp;Ali Akgül\",\"doi\":\"10.1016/j.padiff.2025.101151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper examines the diffusive mussel–algae model and explores soliton solutions and wave structures using advanced analytical techniques, particularly the new auxiliary equation method. The proposed method reveals a variety of solution types, including hyperbolic, parabolic, and mixed forms. These closed-form results provide the nature of the current problem. These solutions are validated against known results and numerical simulations. Additionally, we describe two-dimensional and three-dimensional graphical representations of the solutions, illustrating their spatial and temporal dynamics. This study enhances the theoretical understanding of mussel algae interactions and offers practical insights for eco-logical management, showcasing the contributions of the approach to resolving complex ecological dynamics</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125000786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125000786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了扩散贻贝-藻类模型,并利用先进的分析技术,特别是新的辅助方程方法,探索了孤子解和波浪结构。所提出的方法揭示了多种解类型,包括双曲、抛物线和混合形式。这些封闭形式的结果提供了当前问题的本质。根据已知结果和数值模拟对这些解进行了验证。此外,我们还描述了解的二维和三维图形表示,说明了它们的空间和时间动态。本研究增强了对贻贝藻类相互作用的理论认识,并为生态管理提供了实践见解,展示了该方法对解决复杂生态动力学的贡献
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical dynamics to the interactions of a diffusive mussel–algae model
This paper examines the diffusive mussel–algae model and explores soliton solutions and wave structures using advanced analytical techniques, particularly the new auxiliary equation method. The proposed method reveals a variety of solution types, including hyperbolic, parabolic, and mixed forms. These closed-form results provide the nature of the current problem. These solutions are validated against known results and numerical simulations. Additionally, we describe two-dimensional and three-dimensional graphical representations of the solutions, illustrating their spatial and temporal dynamics. This study enhances the theoretical understanding of mussel algae interactions and offers practical insights for eco-logical management, showcasing the contributions of the approach to resolving complex ecological dynamics
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信