光滑二次曲面的线性轨道

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
Franquiz Caraballo Alba
{"title":"光滑二次曲面的线性轨道","authors":"Franquiz Caraballo Alba","doi":"10.1016/j.aam.2025.102880","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>linear orbit</em> of a degree <em>d</em> hypersurface in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is its orbit under the natural action of <span><math><mi>P</mi><mi>GL</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>, in the projective space of dimension <span><math><mi>N</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>+</mo><mi>d</mi></mrow></mtd></mtr><mtr><mtd><mi>d</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mn>1</mn></math></span> parameterizing such hypersurfaces. This action restricted to a specific hypersurface <em>X</em> extends to a rational map from the projectivization of the space of matrices to <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. The class of the graph of this map is the <em>predegree polynomial</em> of its corresponding hypersurface. The objective of this paper is threefold. First, we formally define the predegree polynomial of a hypersurface in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, introduced in the case of plane curves by Aluffi and Faber, and prove some results in the general case. A key result in the general setting is that a partial resolution of said rational map can contain enough information to compute the predegree polynomial of a hypersurface. Second, we compute the leading term of the predegree polynomial of a smooth quadric in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> over an algebraically closed field with characteristic 0, and compute the other coefficients in the specific case <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>. In analogy to Aluffi and Faber's work, the tool for computing this invariant is producing a (partial) resolution of the previously mentioned rational map which contains enough information to obtain the invariant. Third, we provide a complete resolution of the rational map in the case <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>, which in principle could be used to compute more refined invariants.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"167 ","pages":"Article 102880"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear orbits of smooth quadric surfaces\",\"authors\":\"Franquiz Caraballo Alba\",\"doi\":\"10.1016/j.aam.2025.102880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <em>linear orbit</em> of a degree <em>d</em> hypersurface in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is its orbit under the natural action of <span><math><mi>P</mi><mi>GL</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>, in the projective space of dimension <span><math><mi>N</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>+</mo><mi>d</mi></mrow></mtd></mtr><mtr><mtd><mi>d</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mn>1</mn></math></span> parameterizing such hypersurfaces. This action restricted to a specific hypersurface <em>X</em> extends to a rational map from the projectivization of the space of matrices to <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. The class of the graph of this map is the <em>predegree polynomial</em> of its corresponding hypersurface. The objective of this paper is threefold. First, we formally define the predegree polynomial of a hypersurface in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, introduced in the case of plane curves by Aluffi and Faber, and prove some results in the general case. A key result in the general setting is that a partial resolution of said rational map can contain enough information to compute the predegree polynomial of a hypersurface. Second, we compute the leading term of the predegree polynomial of a smooth quadric in <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> over an algebraically closed field with characteristic 0, and compute the other coefficients in the specific case <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>. In analogy to Aluffi and Faber's work, the tool for computing this invariant is producing a (partial) resolution of the previously mentioned rational map which contains enough information to obtain the invariant. Third, we provide a complete resolution of the rational map in the case <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span>, which in principle could be used to compute more refined invariants.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"167 \",\"pages\":\"Article 102880\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825000429\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000429","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在n =(n+dd)−1维的投影空间中,Pn中的d次超曲面的线性轨道是它在PGL(n+1)的自然作用下的轨道。这个作用被限制在一个特定的超曲面X上,扩展到一个从矩阵空间的投影到PN的有理映射。这个映射的图的类是它对应的超曲面的预次多项式。本文的目的有三个方面。首先,我们正式定义了Pn超曲面的预次多项式(由Aluffi和Faber在平面曲线的情况下引入),并证明了一般情况下的一些结果。一般设置的一个关键结果是,所述有理映射的部分分辨率可以包含足够的信息来计算超曲面的预次多项式。其次,我们计算了特征为0的代数闭域上Pn中的光滑二次多项式的前次多项式的首项,并计算了n=3的特殊情况下的其他系数。与Aluffi和Faber的工作类似,计算该不变量的工具是生成前面提到的包含足够信息以获得不变量的有理映射的(部分)分辨率。第三,我们提供了n=3情况下有理映射的完整解析,原则上可用于计算更精细的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear orbits of smooth quadric surfaces
The linear orbit of a degree d hypersurface in Pn is its orbit under the natural action of PGL(n+1), in the projective space of dimension N=(n+dd)1 parameterizing such hypersurfaces. This action restricted to a specific hypersurface X extends to a rational map from the projectivization of the space of matrices to PN. The class of the graph of this map is the predegree polynomial of its corresponding hypersurface. The objective of this paper is threefold. First, we formally define the predegree polynomial of a hypersurface in Pn, introduced in the case of plane curves by Aluffi and Faber, and prove some results in the general case. A key result in the general setting is that a partial resolution of said rational map can contain enough information to compute the predegree polynomial of a hypersurface. Second, we compute the leading term of the predegree polynomial of a smooth quadric in Pn over an algebraically closed field with characteristic 0, and compute the other coefficients in the specific case n=3. In analogy to Aluffi and Faber's work, the tool for computing this invariant is producing a (partial) resolution of the previously mentioned rational map which contains enough information to obtain the invariant. Third, we provide a complete resolution of the rational map in the case n=3, which in principle could be used to compute more refined invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信