Jiaojiao Zheng , Wei Liu , Xiaolong Wang , He Li , Zhenglin Wang , Zhilong Ai
{"title":"姜黄素通过提高CD8+ T细胞功能和下调AKT/mTORC1/STAT3/PD-L1轴,增强间变性甲状腺癌的抗肿瘤免疫","authors":"Jiaojiao Zheng , Wei Liu , Xiaolong Wang , He Li , Zhenglin Wang , Zhilong Ai","doi":"10.1016/j.prp.2025.155898","DOIUrl":null,"url":null,"abstract":"<div><div>Curcumin, a compound isolated from turmeric, has been found to have promising anti-tumor effects in various cancers, including anaplastic thyroid carcinoma (ATC). However, the molecular mechanism of curcumin in ATC remains largely unclear. CD8 +T cells could eliminate rapidly proliferating malignant cells, whereas interaction between programmed death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) could inhibit the activation and functions of CD8 + T cells. Thus, we aimed to explore whether curcumin could inhibit ATC progression via regulating CD8 + T cells and PD-L1 expression. The protein expression of PD-L1 in ATC cells was detected by western blot assay. Additionally, a syngeneic mouse model was used to assess the effect of curcumin or/and anti-PD-1 treatment on tumorigenesis <em>in vivo</em>. The effect of curcumin on CD8 +T cell function was investigated by flow cytometry <em>in vitro</em> and <em>in vivo</em>. The results indicated curcumin notably suppressed ATC cell proliferation, migration and invasion and induced cell apoptosis. Additionally, curcumin could reduce PD-L1 level in ATC cells through inactivating AKT/mTORC1/STAT3 signaling. Meanwhile, curcumin obviously elevated CD8 + T cell function by elevating the number of IFN-γ producing CD8 + T cells. Furthermore, curcumin or anti-PD-L1 treatment could enhance anti-tumor immunity by increasing infiltration of CD8 + T cells in tumor tissues <em>in vivo</em>. As expected, compared to the single treatment, combination curcumin and anti-PD-1 treatment further elevated CD8 + T cell function <em>in vivo</em>, thereby potentiating anti-tumor immunity in ATC. Collectively, curcumin could enhance anti-tumor immunity in ATC by elevating CD8 + T cell function and inactivating the AKT/mTORC1/STAT3/PD-L1 axis. Our findings demonstrated a novel mechanism of the anti-tumor effects of curcumin in ATC.</div></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":"269 ","pages":"Article 155898"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curcumin enhances anti-tumor immunity in anaplastic thyroid carcinoma by elevating CD8+ T cell function and downregulating the AKT/mTORC1/STAT3/PD-L1 axis\",\"authors\":\"Jiaojiao Zheng , Wei Liu , Xiaolong Wang , He Li , Zhenglin Wang , Zhilong Ai\",\"doi\":\"10.1016/j.prp.2025.155898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Curcumin, a compound isolated from turmeric, has been found to have promising anti-tumor effects in various cancers, including anaplastic thyroid carcinoma (ATC). However, the molecular mechanism of curcumin in ATC remains largely unclear. CD8 +T cells could eliminate rapidly proliferating malignant cells, whereas interaction between programmed death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) could inhibit the activation and functions of CD8 + T cells. Thus, we aimed to explore whether curcumin could inhibit ATC progression via regulating CD8 + T cells and PD-L1 expression. The protein expression of PD-L1 in ATC cells was detected by western blot assay. Additionally, a syngeneic mouse model was used to assess the effect of curcumin or/and anti-PD-1 treatment on tumorigenesis <em>in vivo</em>. The effect of curcumin on CD8 +T cell function was investigated by flow cytometry <em>in vitro</em> and <em>in vivo</em>. The results indicated curcumin notably suppressed ATC cell proliferation, migration and invasion and induced cell apoptosis. Additionally, curcumin could reduce PD-L1 level in ATC cells through inactivating AKT/mTORC1/STAT3 signaling. Meanwhile, curcumin obviously elevated CD8 + T cell function by elevating the number of IFN-γ producing CD8 + T cells. Furthermore, curcumin or anti-PD-L1 treatment could enhance anti-tumor immunity by increasing infiltration of CD8 + T cells in tumor tissues <em>in vivo</em>. As expected, compared to the single treatment, combination curcumin and anti-PD-1 treatment further elevated CD8 + T cell function <em>in vivo</em>, thereby potentiating anti-tumor immunity in ATC. Collectively, curcumin could enhance anti-tumor immunity in ATC by elevating CD8 + T cell function and inactivating the AKT/mTORC1/STAT3/PD-L1 axis. Our findings demonstrated a novel mechanism of the anti-tumor effects of curcumin in ATC.</div></div>\",\"PeriodicalId\":19916,\"journal\":{\"name\":\"Pathology, research and practice\",\"volume\":\"269 \",\"pages\":\"Article 155898\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathology, research and practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0344033825000901\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033825000901","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Curcumin enhances anti-tumor immunity in anaplastic thyroid carcinoma by elevating CD8+ T cell function and downregulating the AKT/mTORC1/STAT3/PD-L1 axis
Curcumin, a compound isolated from turmeric, has been found to have promising anti-tumor effects in various cancers, including anaplastic thyroid carcinoma (ATC). However, the molecular mechanism of curcumin in ATC remains largely unclear. CD8 +T cells could eliminate rapidly proliferating malignant cells, whereas interaction between programmed death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) could inhibit the activation and functions of CD8 + T cells. Thus, we aimed to explore whether curcumin could inhibit ATC progression via regulating CD8 + T cells and PD-L1 expression. The protein expression of PD-L1 in ATC cells was detected by western blot assay. Additionally, a syngeneic mouse model was used to assess the effect of curcumin or/and anti-PD-1 treatment on tumorigenesis in vivo. The effect of curcumin on CD8 +T cell function was investigated by flow cytometry in vitro and in vivo. The results indicated curcumin notably suppressed ATC cell proliferation, migration and invasion and induced cell apoptosis. Additionally, curcumin could reduce PD-L1 level in ATC cells through inactivating AKT/mTORC1/STAT3 signaling. Meanwhile, curcumin obviously elevated CD8 + T cell function by elevating the number of IFN-γ producing CD8 + T cells. Furthermore, curcumin or anti-PD-L1 treatment could enhance anti-tumor immunity by increasing infiltration of CD8 + T cells in tumor tissues in vivo. As expected, compared to the single treatment, combination curcumin and anti-PD-1 treatment further elevated CD8 + T cell function in vivo, thereby potentiating anti-tumor immunity in ATC. Collectively, curcumin could enhance anti-tumor immunity in ATC by elevating CD8 + T cell function and inactivating the AKT/mTORC1/STAT3/PD-L1 axis. Our findings demonstrated a novel mechanism of the anti-tumor effects of curcumin in ATC.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.