含两种化学物质的拟线性两种吸引-排斥趋化系统的大时间行为

IF 1.2 3区 数学 Q1 MATHEMATICS
Miaoqing Tian , Fuxin Yu , Xinchun Gao , Jiahui Hu
{"title":"含两种化学物质的拟线性两种吸引-排斥趋化系统的大时间行为","authors":"Miaoqing Tian ,&nbsp;Fuxin Yu ,&nbsp;Xinchun Gao ,&nbsp;Jiahui Hu","doi":"10.1016/j.jmaa.2025.129471","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the quasilinear two-species attraction-repulsion chemotaxis system with two chemicals: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>, <span><math><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>w</mi></math></span>, <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>w</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup></math></span>, <span><math><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><mi>z</mi><mo>+</mo><mi>u</mi></math></span>, subject to the homogeneous Neumann boundary conditions in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>(<span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>) with smooth boundary, where the parameters <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>,</mo><mspace></mspace><msub><mrow><mi>Φ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>s</mi><msup><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup></math></span> with <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>. The interactions among the diffusion, attraction, repulsion, and logistic sources in the system determine the behavior of solutions. It is showed that when <span><math><mi>N</mi><mo>&lt;</mo><mn>4</mn></math></span>, as long as the diffusion mechanism of population <em>w</em> dominates with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac></math></span>, global boundedness of solutions can be guaranteed; if <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>}</mo></math></span> or <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>}</mo></math></span>, i.e. the diffusion mechanisms or the logistic source terms of populations u and w are both dominant, the solutions are globally bounded; when the diffusion mechanism of <em>u</em> (or <em>w</em>) and the logistic source term of <em>w</em> (or <em>u</em>) dominate with <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>}</mo></math></span> (or <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>}</mo></math></span>), the solutions are globally bounded. Also, we have proved that when the logistic source term of either <em>u</em> or <em>w</em> dominates, the global boundedness of the solutions can be obtained. Moreover, we give the large time behavior of the globally bounded solutions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129471"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large time behavior of a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals\",\"authors\":\"Miaoqing Tian ,&nbsp;Fuxin Yu ,&nbsp;Xinchun Gao ,&nbsp;Jiahui Hu\",\"doi\":\"10.1016/j.jmaa.2025.129471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with the quasilinear two-species attraction-repulsion chemotaxis system with two chemicals: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>, <span><math><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>w</mi></math></span>, <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>w</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup></math></span>, <span><math><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><mi>z</mi><mo>+</mo><mi>u</mi></math></span>, subject to the homogeneous Neumann boundary conditions in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>(<span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>) with smooth boundary, where the parameters <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>,</mo><mspace></mspace><msub><mrow><mi>Φ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>s</mi><msup><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup></math></span> with <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>. The interactions among the diffusion, attraction, repulsion, and logistic sources in the system determine the behavior of solutions. It is showed that when <span><math><mi>N</mi><mo>&lt;</mo><mn>4</mn></math></span>, as long as the diffusion mechanism of population <em>w</em> dominates with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac></math></span>, global boundedness of solutions can be guaranteed; if <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>}</mo></math></span> or <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>}</mo></math></span>, i.e. the diffusion mechanisms or the logistic source terms of populations u and w are both dominant, the solutions are globally bounded; when the diffusion mechanism of <em>u</em> (or <em>w</em>) and the logistic source term of <em>w</em> (or <em>u</em>) dominate with <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>}</mo></math></span> (or <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>}</mo></math></span>), the solutions are globally bounded. Also, we have proved that when the logistic source term of either <em>u</em> or <em>w</em> dominates, the global boundedness of the solutions can be obtained. Moreover, we give the large time behavior of the globally bounded solutions.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 1\",\"pages\":\"Article 129471\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25002525\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002525","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究具有两种化学物质的拟线性两种吸引-排斥趋化系统:ut=∇(D1(u)∇u) -∇⋅(Φ1(u)∇v)+r1u−μ1uk1, 0=Δv−v+w, wt=∇⋅(D2(w)∇w)+∇⋅(Φ2(w)∇z)+r2w−μ2wk2, 0=Δz−z+u,满足有界域Ω∧RN(N≥2)光滑边界的齐次诺伊曼边界条件,其中参数ri,μi>0, ki>1, Di(s)=(s+1)pi,Φi(s)=χis(s+1)qi−1,χi>0, pi,qi∈R, i=1,2。系统中扩散、吸引、排斥和逻辑源之间的相互作用决定了解的行为。结果表明,当N<;4时,只要种群w的扩散机制以q2−p2<;4N占优,解的全局有界性就能得到保证;若max (q1,q2)≤min (p1+2N,p2+2N)或max (q1,q2)≤min (k1−1,k2−1),即种群u和w的扩散机制或logistic源项均为显性,则解是全局有界的;当u(或w)的扩散机制和w(或u)的逻辑源项占主导地位且max (q1,q2)≤min (k2−1,p1+2N)(或max (q1,q2)≤min (k1−1,p2+2N)时,解是全局有界的。并证明了当u或w的逻辑源项占主导时,解的整体有界性是可以得到的。此外,我们给出了全局有界解的大时间行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large time behavior of a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals
This paper deals with the quasilinear two-species attraction-repulsion chemotaxis system with two chemicals: ut=(D1(u)u)(Φ1(u)v)+r1uμ1uk1, 0=Δvv+w, wt=(D2(w)w)+(Φ2(w)z)+r2wμ2wk2, 0=Δzz+u, subject to the homogeneous Neumann boundary conditions in a bounded domain ΩRN(N2) with smooth boundary, where the parameters ri,μi>0, ki>1 and Di(s)=(s+1)pi,Φi(s)=χis(s+1)qi1 with χi>0, pi,qiR, i=1,2. The interactions among the diffusion, attraction, repulsion, and logistic sources in the system determine the behavior of solutions. It is showed that when N<4, as long as the diffusion mechanism of population w dominates with q2p2<4N, global boundedness of solutions can be guaranteed; if max{q1,q2}min{p1+2N,p2+2N} or max{q1,q2}min{k11,k21}, i.e. the diffusion mechanisms or the logistic source terms of populations u and w are both dominant, the solutions are globally bounded; when the diffusion mechanism of u (or w) and the logistic source term of w (or u) dominate with max{q1,q2}min{k21,p1+2N} (or max{q1,q2}min{k11,p2+2N}), the solutions are globally bounded. Also, we have proved that when the logistic source term of either u or w dominates, the global boundedness of the solutions can be obtained. Moreover, we give the large time behavior of the globally bounded solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信