Adam Grosvirt-Dramen, Zachary J. Urbach, Paul J. Hurst, Claire E. Kwok, Joseph P. Patterson, Fengbin Wang and Allon I. Hochbaum*,
{"title":"从螺旋状缩氨酸构建块中分层组装导电纤维","authors":"Adam Grosvirt-Dramen, Zachary J. Urbach, Paul J. Hurst, Claire E. Kwok, Joseph P. Patterson, Fengbin Wang and Allon I. Hochbaum*, ","doi":"10.1021/acsnano.4c1724810.1021/acsnano.4c17248","DOIUrl":null,"url":null,"abstract":"<p >Biology provides many sources of inspiration for synthetic and multifunctional nanomaterials. Naturally evolved proteins exhibit specialized, sequence-defined functions and self-assembly behavior. Recapitulating their molecularly defined self-assembly behavior, however, is challenging in <i>de novo</i> proteins. Peptides, on the other hand, represent a more well-defined and rationally designable space with the potential for sequence-programmable, stimuli-responsive design for structure and function, making them ideal building blocks of bioelectronic interfaces. In this work, we design peptides that exhibit stimuli-responsive self-assembly and the capacity to transport electrical current over micrometer-long distances. A lysine–lysine (KK) motif inserted at solvent-exposed positions of a coiled-coil-forming peptide sequence introduces pH-dependent control over a transition from unordered to α-helical peptide structure. The ordered state of the peptide serves as a building block for the assembly of coiled coils and higher-order assemblies. Cryo-EM structures of these structures reveal a hierarchical organization of α-helical peptides in a cross coiled coil (CCC) arrangement. Structural analysis also reveals a β-sheet fiber phase under certain conditions and placements of the KK motif, revealing a complex and sensitive self-assembly pathway. Both solid-state and solution-based electrochemical characterizations show that CCC fibers are electronically conductive. Single-fiber conductive AFM measurement indicates that the solid-state electrical conductivity is comparable with bacterial cytochrome filaments. Solution-deposited fiber films approximately doubled the electroactive surface area of the electrode, confirming their conductivity in aqueous environments. This work establishes a stimuli-responsive peptide sequence element for balancing the order–disorder transitions in peptides to control their self-assembly into highly organized electronically conductive nanofibers.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 10","pages":"10162–10172 10162–10172"},"PeriodicalIF":16.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Assembly of Conductive Fibers from Coiled-Coil Peptide Building Blocks\",\"authors\":\"Adam Grosvirt-Dramen, Zachary J. Urbach, Paul J. Hurst, Claire E. Kwok, Joseph P. Patterson, Fengbin Wang and Allon I. Hochbaum*, \",\"doi\":\"10.1021/acsnano.4c1724810.1021/acsnano.4c17248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biology provides many sources of inspiration for synthetic and multifunctional nanomaterials. Naturally evolved proteins exhibit specialized, sequence-defined functions and self-assembly behavior. Recapitulating their molecularly defined self-assembly behavior, however, is challenging in <i>de novo</i> proteins. Peptides, on the other hand, represent a more well-defined and rationally designable space with the potential for sequence-programmable, stimuli-responsive design for structure and function, making them ideal building blocks of bioelectronic interfaces. In this work, we design peptides that exhibit stimuli-responsive self-assembly and the capacity to transport electrical current over micrometer-long distances. A lysine–lysine (KK) motif inserted at solvent-exposed positions of a coiled-coil-forming peptide sequence introduces pH-dependent control over a transition from unordered to α-helical peptide structure. The ordered state of the peptide serves as a building block for the assembly of coiled coils and higher-order assemblies. Cryo-EM structures of these structures reveal a hierarchical organization of α-helical peptides in a cross coiled coil (CCC) arrangement. Structural analysis also reveals a β-sheet fiber phase under certain conditions and placements of the KK motif, revealing a complex and sensitive self-assembly pathway. Both solid-state and solution-based electrochemical characterizations show that CCC fibers are electronically conductive. Single-fiber conductive AFM measurement indicates that the solid-state electrical conductivity is comparable with bacterial cytochrome filaments. Solution-deposited fiber films approximately doubled the electroactive surface area of the electrode, confirming their conductivity in aqueous environments. This work establishes a stimuli-responsive peptide sequence element for balancing the order–disorder transitions in peptides to control their self-assembly into highly organized electronically conductive nanofibers.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 10\",\"pages\":\"10162–10172 10162–10172\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c17248\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c17248","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hierarchical Assembly of Conductive Fibers from Coiled-Coil Peptide Building Blocks
Biology provides many sources of inspiration for synthetic and multifunctional nanomaterials. Naturally evolved proteins exhibit specialized, sequence-defined functions and self-assembly behavior. Recapitulating their molecularly defined self-assembly behavior, however, is challenging in de novo proteins. Peptides, on the other hand, represent a more well-defined and rationally designable space with the potential for sequence-programmable, stimuli-responsive design for structure and function, making them ideal building blocks of bioelectronic interfaces. In this work, we design peptides that exhibit stimuli-responsive self-assembly and the capacity to transport electrical current over micrometer-long distances. A lysine–lysine (KK) motif inserted at solvent-exposed positions of a coiled-coil-forming peptide sequence introduces pH-dependent control over a transition from unordered to α-helical peptide structure. The ordered state of the peptide serves as a building block for the assembly of coiled coils and higher-order assemblies. Cryo-EM structures of these structures reveal a hierarchical organization of α-helical peptides in a cross coiled coil (CCC) arrangement. Structural analysis also reveals a β-sheet fiber phase under certain conditions and placements of the KK motif, revealing a complex and sensitive self-assembly pathway. Both solid-state and solution-based electrochemical characterizations show that CCC fibers are electronically conductive. Single-fiber conductive AFM measurement indicates that the solid-state electrical conductivity is comparable with bacterial cytochrome filaments. Solution-deposited fiber films approximately doubled the electroactive surface area of the electrode, confirming their conductivity in aqueous environments. This work establishes a stimuli-responsive peptide sequence element for balancing the order–disorder transitions in peptides to control their self-assembly into highly organized electronically conductive nanofibers.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.