{"title":"绿色无甲醛化学镀机制、动力学和导电铜图案的可持续浴循环","authors":"Yabing Zhang*, Yiru Xu and Tao Wang, ","doi":"10.1021/acs.langmuir.4c0455010.1021/acs.langmuir.4c04550","DOIUrl":null,"url":null,"abstract":"<p >This research investigates the mechanism, kinetics, and sustainable bath recycling of a green formaldehyde-free electroless plating copper process for conductive copper patterns based on core–shell magnetic copper-coated-nickel nanoparticles (Ni@Cu NPs) catalyzed, which aims to understand the mechanisms governing the deposition process, optimize the plating conditions, explore the recycling of the plating bath for green fabrication flexible printed circuits (FPCs), and reduce waste discharge. By establishing mathematical models of mass transfer and electrochemical reactions to simulate the electroless plating process, the models revealed the changing trends of mixing potential, current density, and deposition thickness and can predict the progress of the electroless plating reaction. Additionally, the work establishes comprehensive kinetic equations, identifying the effects of various factors such as temperature, pH, and reactant concentration on the reaction rate and process efficiency. A key breakthrough lies in the innovative recycling strategy for the plating bath, which successfully maintains the integrity of copper pattern conductivity after 10 bath cycles with a minimal increase in sheet resistance. This controlled replenishment of reactants significantly reduces material loss and waste discharge, promoting both economic and environmental sustainability in electronics manufacturing.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 10","pages":"6621–6632 6621–6632"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Formaldehyde-Free Electroless Plating Mechanism, Kinetics, and Sustainable Bath Recycling for Conductive Copper Patterns\",\"authors\":\"Yabing Zhang*, Yiru Xu and Tao Wang, \",\"doi\":\"10.1021/acs.langmuir.4c0455010.1021/acs.langmuir.4c04550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This research investigates the mechanism, kinetics, and sustainable bath recycling of a green formaldehyde-free electroless plating copper process for conductive copper patterns based on core–shell magnetic copper-coated-nickel nanoparticles (Ni@Cu NPs) catalyzed, which aims to understand the mechanisms governing the deposition process, optimize the plating conditions, explore the recycling of the plating bath for green fabrication flexible printed circuits (FPCs), and reduce waste discharge. By establishing mathematical models of mass transfer and electrochemical reactions to simulate the electroless plating process, the models revealed the changing trends of mixing potential, current density, and deposition thickness and can predict the progress of the electroless plating reaction. Additionally, the work establishes comprehensive kinetic equations, identifying the effects of various factors such as temperature, pH, and reactant concentration on the reaction rate and process efficiency. A key breakthrough lies in the innovative recycling strategy for the plating bath, which successfully maintains the integrity of copper pattern conductivity after 10 bath cycles with a minimal increase in sheet resistance. This controlled replenishment of reactants significantly reduces material loss and waste discharge, promoting both economic and environmental sustainability in electronics manufacturing.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 10\",\"pages\":\"6621–6632 6621–6632\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04550\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04550","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Green Formaldehyde-Free Electroless Plating Mechanism, Kinetics, and Sustainable Bath Recycling for Conductive Copper Patterns
This research investigates the mechanism, kinetics, and sustainable bath recycling of a green formaldehyde-free electroless plating copper process for conductive copper patterns based on core–shell magnetic copper-coated-nickel nanoparticles (Ni@Cu NPs) catalyzed, which aims to understand the mechanisms governing the deposition process, optimize the plating conditions, explore the recycling of the plating bath for green fabrication flexible printed circuits (FPCs), and reduce waste discharge. By establishing mathematical models of mass transfer and electrochemical reactions to simulate the electroless plating process, the models revealed the changing trends of mixing potential, current density, and deposition thickness and can predict the progress of the electroless plating reaction. Additionally, the work establishes comprehensive kinetic equations, identifying the effects of various factors such as temperature, pH, and reactant concentration on the reaction rate and process efficiency. A key breakthrough lies in the innovative recycling strategy for the plating bath, which successfully maintains the integrity of copper pattern conductivity after 10 bath cycles with a minimal increase in sheet resistance. This controlled replenishment of reactants significantly reduces material loss and waste discharge, promoting both economic and environmental sustainability in electronics manufacturing.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).