Chayanon Ngambenjawong, Henry Ko, Tahoura Samad, Novalia Pishesha, Hidde L. Ploegh and Sangeeta N. Bhatia*,
{"title":"纳米体靶向条件抗菌治疗","authors":"Chayanon Ngambenjawong, Henry Ko, Tahoura Samad, Novalia Pishesha, Hidde L. Ploegh and Sangeeta N. Bhatia*, ","doi":"10.1021/acsnano.4c1600710.1021/acsnano.4c16007","DOIUrl":null,"url":null,"abstract":"<p >Conditional therapeutics that rely on disease microenvironment-specific triggers for activation are a promising strategy to improve therapeutic cargos. Among the investigated triggers, protease activity is used most often because of its dysregulation in several diseases. How to optimally fine-tune protease activation for different therapeutic cargos remains a challenge. Here, we designed nanobody-targeted conditional antimicrobial therapeutics to deliver a model therapeutic peptide and protein to the site of bacterial infection. We explored several parameters that influence proteolytic activation. We report the use of targeting nanobodies to enhance the activation of therapeutics that are otherwise activated inefficiently despite extensive optimization of the cleavable linker. Specifically, the pairing of Ly6G/C or ADAM10-targeting nanobodies with ADAM10-cleavable linkers improved activation via proximity-enabled reactivity. This study demonstrates a distinct role of active targeting in conditional therapeutic activation. More broadly, this optimization framework provides a guideline for the development of conditional therapeutics to treat various diseases in which protease activity is dysregulated.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 10","pages":"9958–9970 9958–9970"},"PeriodicalIF":16.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c16007","citationCount":"0","resultStr":"{\"title\":\"Nanobody-Targeted Conditional Antimicrobial Therapeutics\",\"authors\":\"Chayanon Ngambenjawong, Henry Ko, Tahoura Samad, Novalia Pishesha, Hidde L. Ploegh and Sangeeta N. Bhatia*, \",\"doi\":\"10.1021/acsnano.4c1600710.1021/acsnano.4c16007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Conditional therapeutics that rely on disease microenvironment-specific triggers for activation are a promising strategy to improve therapeutic cargos. Among the investigated triggers, protease activity is used most often because of its dysregulation in several diseases. How to optimally fine-tune protease activation for different therapeutic cargos remains a challenge. Here, we designed nanobody-targeted conditional antimicrobial therapeutics to deliver a model therapeutic peptide and protein to the site of bacterial infection. We explored several parameters that influence proteolytic activation. We report the use of targeting nanobodies to enhance the activation of therapeutics that are otherwise activated inefficiently despite extensive optimization of the cleavable linker. Specifically, the pairing of Ly6G/C or ADAM10-targeting nanobodies with ADAM10-cleavable linkers improved activation via proximity-enabled reactivity. This study demonstrates a distinct role of active targeting in conditional therapeutic activation. More broadly, this optimization framework provides a guideline for the development of conditional therapeutics to treat various diseases in which protease activity is dysregulated.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 10\",\"pages\":\"9958–9970 9958–9970\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c16007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c16007\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c16007","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Conditional therapeutics that rely on disease microenvironment-specific triggers for activation are a promising strategy to improve therapeutic cargos. Among the investigated triggers, protease activity is used most often because of its dysregulation in several diseases. How to optimally fine-tune protease activation for different therapeutic cargos remains a challenge. Here, we designed nanobody-targeted conditional antimicrobial therapeutics to deliver a model therapeutic peptide and protein to the site of bacterial infection. We explored several parameters that influence proteolytic activation. We report the use of targeting nanobodies to enhance the activation of therapeutics that are otherwise activated inefficiently despite extensive optimization of the cleavable linker. Specifically, the pairing of Ly6G/C or ADAM10-targeting nanobodies with ADAM10-cleavable linkers improved activation via proximity-enabled reactivity. This study demonstrates a distinct role of active targeting in conditional therapeutic activation. More broadly, this optimization framework provides a guideline for the development of conditional therapeutics to treat various diseases in which protease activity is dysregulated.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.