电子和空穴传输层对提高Ca3PI3太阳能电池效率的深入分析

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Md. Selim Reza, Avijit Ghosh*, Nidhal Drissi, Agnita Sikder Mugdho, Md. Shamim Reza and Mst. Mohona Akter, 
{"title":"电子和空穴传输层对提高Ca3PI3太阳能电池效率的深入分析","authors":"Md. Selim Reza,&nbsp;Avijit Ghosh*,&nbsp;Nidhal Drissi,&nbsp;Agnita Sikder Mugdho,&nbsp;Md. Shamim Reza and Mst. Mohona Akter,&nbsp;","doi":"10.1021/acs.langmuir.4c0466010.1021/acs.langmuir.4c04660","DOIUrl":null,"url":null,"abstract":"<p >This study investigates lead-free calcium–phosphorus iodide (Ca<sub>3</sub>PI<sub>3</sub>) perovskite solar cells with various electron transport layers (ETLs) like TiO<sub>2</sub> and SnS<sub>2</sub> and hole transport layers (HTLs) such as CuO, MoO<sub>3</sub>, P<sub>3</sub>HT, Sb<sub>2</sub>S<sub>3</sub>, CuSbS<sub>2</sub>, and GeSe. The ideal HTL, MoO<sub>3</sub>, was chosen, and its performance was simulated by using the SCAPS-1D tool. Two device structures were analyzed: device-I (Al/FTO/TiO<sub>2</sub>/Ca<sub>3</sub>PI<sub>3</sub>/MoO<sub>3</sub>/Ni) and device-II (Al/FTO/SnS<sub>2</sub>/Ca<sub>3</sub>PI<sub>3</sub>/MoO<sub>3</sub>/Ni). Various parameters were carefully optimized to achieve the best device performance, including donor and acceptor densities, defect density, thickness, series and shunt resistances, generation-recombination dynamics, current density (IV), quantum efficiency (QE%), and temperature. The top-performing device-I achieved a power conversion efficiency (PCE) of 29.02%, with a <i>V</i><sub>OC</sub> of 1.288 V, a <i>J</i><sub>SC</sub> of 25.235 mA/cm<sup>2</sup>, and a fill factor (FF) of 89.26%. Device II showed a PCE of 26.47%, with a <i>V</i><sub>OC</sub> of 1.2486 V, <i>J</i><sub>SC</sub> of 25.233 mA/cm<sup>2</sup>, and FF of 84.01%. These results emphasize the promise of device-I for high-performance Ca<sub>3</sub>PI<sub>3</sub>-based photovoltaic applications.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 10","pages":"6657–6674 6657–6674"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Depth Analysis of Electron and Hole Transport Layers for Enhancing Ca3PI3 Solar Cell Efficiency through Advanced Numerical Simulation\",\"authors\":\"Md. Selim Reza,&nbsp;Avijit Ghosh*,&nbsp;Nidhal Drissi,&nbsp;Agnita Sikder Mugdho,&nbsp;Md. Shamim Reza and Mst. Mohona Akter,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.4c0466010.1021/acs.langmuir.4c04660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigates lead-free calcium–phosphorus iodide (Ca<sub>3</sub>PI<sub>3</sub>) perovskite solar cells with various electron transport layers (ETLs) like TiO<sub>2</sub> and SnS<sub>2</sub> and hole transport layers (HTLs) such as CuO, MoO<sub>3</sub>, P<sub>3</sub>HT, Sb<sub>2</sub>S<sub>3</sub>, CuSbS<sub>2</sub>, and GeSe. The ideal HTL, MoO<sub>3</sub>, was chosen, and its performance was simulated by using the SCAPS-1D tool. Two device structures were analyzed: device-I (Al/FTO/TiO<sub>2</sub>/Ca<sub>3</sub>PI<sub>3</sub>/MoO<sub>3</sub>/Ni) and device-II (Al/FTO/SnS<sub>2</sub>/Ca<sub>3</sub>PI<sub>3</sub>/MoO<sub>3</sub>/Ni). Various parameters were carefully optimized to achieve the best device performance, including donor and acceptor densities, defect density, thickness, series and shunt resistances, generation-recombination dynamics, current density (IV), quantum efficiency (QE%), and temperature. The top-performing device-I achieved a power conversion efficiency (PCE) of 29.02%, with a <i>V</i><sub>OC</sub> of 1.288 V, a <i>J</i><sub>SC</sub> of 25.235 mA/cm<sup>2</sup>, and a fill factor (FF) of 89.26%. Device II showed a PCE of 26.47%, with a <i>V</i><sub>OC</sub> of 1.2486 V, <i>J</i><sub>SC</sub> of 25.233 mA/cm<sup>2</sup>, and FF of 84.01%. These results emphasize the promise of device-I for high-performance Ca<sub>3</sub>PI<sub>3</sub>-based photovoltaic applications.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 10\",\"pages\":\"6657–6674 6657–6674\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04660\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04660","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了具有多种电子传输层(ETLs)(如TiO2和SnS2)和空穴传输层(HTLs)(如CuO、MoO3、P3HT、Sb2S3、CuSbS2和GeSe)的无铅钙磷碘化钙钛矿(Ca3PI3)太阳能电池。选择了理想的html MoO3,并利用SCAPS-1D工具对其性能进行了仿真。分析了器件i (Al/FTO/TiO2/Ca3PI3/MoO3/Ni)和器件ii (Al/FTO/SnS2/Ca3PI3/MoO3/Ni)两种结构。为了达到最佳的器件性能,我们仔细优化了各种参数,包括供体和受体密度、缺陷密度、厚度、串联和分流电阻、生成-重组动力学、电流密度(IV)、量子效率(QE%)和温度。性能最好的器件- i实现了29.02%的功率转换效率(PCE), VOC为1.288 V, JSC为25.235 mA/cm2,填充因子(FF)为89.26%。器件II的PCE为26.47%,VOC为1.2486 V, JSC为25.233 mA/cm2, FF为84.01%。这些结果强调了器件i在高性能基于ca3pi3的光伏应用中的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In-Depth Analysis of Electron and Hole Transport Layers for Enhancing Ca3PI3 Solar Cell Efficiency through Advanced Numerical Simulation

In-Depth Analysis of Electron and Hole Transport Layers for Enhancing Ca3PI3 Solar Cell Efficiency through Advanced Numerical Simulation

This study investigates lead-free calcium–phosphorus iodide (Ca3PI3) perovskite solar cells with various electron transport layers (ETLs) like TiO2 and SnS2 and hole transport layers (HTLs) such as CuO, MoO3, P3HT, Sb2S3, CuSbS2, and GeSe. The ideal HTL, MoO3, was chosen, and its performance was simulated by using the SCAPS-1D tool. Two device structures were analyzed: device-I (Al/FTO/TiO2/Ca3PI3/MoO3/Ni) and device-II (Al/FTO/SnS2/Ca3PI3/MoO3/Ni). Various parameters were carefully optimized to achieve the best device performance, including donor and acceptor densities, defect density, thickness, series and shunt resistances, generation-recombination dynamics, current density (IV), quantum efficiency (QE%), and temperature. The top-performing device-I achieved a power conversion efficiency (PCE) of 29.02%, with a VOC of 1.288 V, a JSC of 25.235 mA/cm2, and a fill factor (FF) of 89.26%. Device II showed a PCE of 26.47%, with a VOC of 1.2486 V, JSC of 25.233 mA/cm2, and FF of 84.01%. These results emphasize the promise of device-I for high-performance Ca3PI3-based photovoltaic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信