提高Cs2TiBr6无铅钙钛矿太阳能电池性能:电子和空穴传输层影响的模拟研究

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Md. Selim Reza, Avijit Ghosh*, Md. Shamim Reza, Md. Aktarujjaman, Md Jakaria Talukder, Samar O. Aljazzar, Jehan Y. Al-Humaidi and Yousef E. Mukhrish, 
{"title":"提高Cs2TiBr6无铅钙钛矿太阳能电池性能:电子和空穴传输层影响的模拟研究","authors":"Md. Selim Reza,&nbsp;Avijit Ghosh*,&nbsp;Md. Shamim Reza,&nbsp;Md. Aktarujjaman,&nbsp;Md Jakaria Talukder,&nbsp;Samar O. Aljazzar,&nbsp;Jehan Y. Al-Humaidi and Yousef E. Mukhrish,&nbsp;","doi":"10.1021/acs.langmuir.4c0526510.1021/acs.langmuir.4c05265","DOIUrl":null,"url":null,"abstract":"<p >This research explores the capability of Cs<sub>2</sub>TiBr<sub>6</sub> as a substrate for high-performance hybrid perovskite solar cells (HPSCs), incorporating wide-bandgap chalcogenide electron transport layers (ETLs), namely ZnSe, TiO<sub>2</sub>, SnS<sub>2</sub>, and ZnO, with a wide selection of hole transport layers (HTLs) including V<sub>2</sub>O<sub>5</sub>, CuSbS<sub>2</sub>, and Cu<sub>2</sub>O. ZnSe was found to be the best ETL, and the SCAPS-1D simulator was used to adjust the device’s thickness in order to maximize efficiency. Key factors such as doping concentration, density of defects, layer thickness, operating temperature, and interface defects were exhaustively examined. Three distinct device configurations were evaluated: Device I (Al/FTO/ZnSe/Cs<sub>2</sub>TiBr<sub>6</sub>/V<sub>2</sub>O<sub>5</sub>/Os), Device II (Al/FTO/ZnSe/Cs<sub>2</sub>TiBr<sub>6</sub>/CuSbS<sub>2</sub>/Os), and Device III (Al/FTO/ZnSe/Cs<sub>2</sub>TiBr<sub>6</sub>/Cu<sub>2</sub>O/Os). Device I achieved a record power conversion efficiency (PCE) of 31.02%, with a fill factor (FF) of 90.68%, an open-circuit voltage (<i>V</i><sub>OC</sub>) of 1.40 V, and a short-circuit current density (<i>J</i><sub>SC</sub>) of 24.434 mA/cm<sup>2</sup>, establishing new performance benchmarks for Cs<sub>2</sub>TiBr<sub>6</sub>-based solar cells. Devices II and III demonstrated PCEs of 28.58 and 23.84%, respectively. In-depth analyses of quantum efficiency (QE %), carrier dynamics, generation-recombination rates, and series-shunt resistances further highlighted the robustness of the optimized devices. The findings underscore Device I’s exceptional promise for high-efficiency Cs<sub>2</sub>TiBr<sub>6</sub>-based hybrid perovskite photocells, offering significant potential for forthcoming sustainable solar energy applications.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 10","pages":"6987–7007 6987–7007"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Performance of Cs2TiBr6 Lead-Free Perovskite Solar Cells: A Simulation Study on the Impact of Electron and Hole Transport Layers\",\"authors\":\"Md. Selim Reza,&nbsp;Avijit Ghosh*,&nbsp;Md. Shamim Reza,&nbsp;Md. Aktarujjaman,&nbsp;Md Jakaria Talukder,&nbsp;Samar O. Aljazzar,&nbsp;Jehan Y. Al-Humaidi and Yousef E. Mukhrish,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.4c0526510.1021/acs.langmuir.4c05265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This research explores the capability of Cs<sub>2</sub>TiBr<sub>6</sub> as a substrate for high-performance hybrid perovskite solar cells (HPSCs), incorporating wide-bandgap chalcogenide electron transport layers (ETLs), namely ZnSe, TiO<sub>2</sub>, SnS<sub>2</sub>, and ZnO, with a wide selection of hole transport layers (HTLs) including V<sub>2</sub>O<sub>5</sub>, CuSbS<sub>2</sub>, and Cu<sub>2</sub>O. ZnSe was found to be the best ETL, and the SCAPS-1D simulator was used to adjust the device’s thickness in order to maximize efficiency. Key factors such as doping concentration, density of defects, layer thickness, operating temperature, and interface defects were exhaustively examined. Three distinct device configurations were evaluated: Device I (Al/FTO/ZnSe/Cs<sub>2</sub>TiBr<sub>6</sub>/V<sub>2</sub>O<sub>5</sub>/Os), Device II (Al/FTO/ZnSe/Cs<sub>2</sub>TiBr<sub>6</sub>/CuSbS<sub>2</sub>/Os), and Device III (Al/FTO/ZnSe/Cs<sub>2</sub>TiBr<sub>6</sub>/Cu<sub>2</sub>O/Os). Device I achieved a record power conversion efficiency (PCE) of 31.02%, with a fill factor (FF) of 90.68%, an open-circuit voltage (<i>V</i><sub>OC</sub>) of 1.40 V, and a short-circuit current density (<i>J</i><sub>SC</sub>) of 24.434 mA/cm<sup>2</sup>, establishing new performance benchmarks for Cs<sub>2</sub>TiBr<sub>6</sub>-based solar cells. Devices II and III demonstrated PCEs of 28.58 and 23.84%, respectively. In-depth analyses of quantum efficiency (QE %), carrier dynamics, generation-recombination rates, and series-shunt resistances further highlighted the robustness of the optimized devices. The findings underscore Device I’s exceptional promise for high-efficiency Cs<sub>2</sub>TiBr<sub>6</sub>-based hybrid perovskite photocells, offering significant potential for forthcoming sustainable solar energy applications.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 10\",\"pages\":\"6987–7007 6987–7007\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c05265\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c05265","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探索了Cs2TiBr6作为高性能杂化钙钛矿太阳能电池(HPSCs)衬底的能力,包括宽带隙硫系电子传输层(ETLs),即ZnSe, TiO2, SnS2和ZnO,以及广泛选择的空穴传输层(HTLs),包括V2O5, CuSbS2和Cu2O。发现ZnSe是最佳的ETL,并利用SCAPS-1D模拟器对器件厚度进行调整,以实现效率最大化。研究了掺杂浓度、缺陷密度、层厚、操作温度和界面缺陷等关键因素。评估了三种不同的器件配置:器件I (Al/FTO/ZnSe/Cs2TiBr6/V2O5/Os),器件II (Al/FTO/ZnSe/Cs2TiBr6/CuSbS2/Os)和器件III (Al/FTO/ZnSe/Cs2TiBr6/Cu2O/Os)。器件I实现了创纪录的功率转换效率(PCE)为31.02%,填充因子(FF)为90.68%,开路电压(VOC)为1.40 V,短路电流密度(JSC)为24.434 mA/cm2,为基于cs2tibr6的太阳能电池建立了新的性能基准。器件II和III的pce分别为28.58和23.84%。对量子效率(QE %)、载流子动力学、生成重组率和串联分流电阻的深入分析进一步强调了优化器件的鲁棒性。这一发现强调了Device I在高效cs2tibr6基混合钙钛矿光电池方面的卓越前景,为即将到来的可持续太阳能应用提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing the Performance of Cs2TiBr6 Lead-Free Perovskite Solar Cells: A Simulation Study on the Impact of Electron and Hole Transport Layers

Enhancing the Performance of Cs2TiBr6 Lead-Free Perovskite Solar Cells: A Simulation Study on the Impact of Electron and Hole Transport Layers

This research explores the capability of Cs2TiBr6 as a substrate for high-performance hybrid perovskite solar cells (HPSCs), incorporating wide-bandgap chalcogenide electron transport layers (ETLs), namely ZnSe, TiO2, SnS2, and ZnO, with a wide selection of hole transport layers (HTLs) including V2O5, CuSbS2, and Cu2O. ZnSe was found to be the best ETL, and the SCAPS-1D simulator was used to adjust the device’s thickness in order to maximize efficiency. Key factors such as doping concentration, density of defects, layer thickness, operating temperature, and interface defects were exhaustively examined. Three distinct device configurations were evaluated: Device I (Al/FTO/ZnSe/Cs2TiBr6/V2O5/Os), Device II (Al/FTO/ZnSe/Cs2TiBr6/CuSbS2/Os), and Device III (Al/FTO/ZnSe/Cs2TiBr6/Cu2O/Os). Device I achieved a record power conversion efficiency (PCE) of 31.02%, with a fill factor (FF) of 90.68%, an open-circuit voltage (VOC) of 1.40 V, and a short-circuit current density (JSC) of 24.434 mA/cm2, establishing new performance benchmarks for Cs2TiBr6-based solar cells. Devices II and III demonstrated PCEs of 28.58 and 23.84%, respectively. In-depth analyses of quantum efficiency (QE %), carrier dynamics, generation-recombination rates, and series-shunt resistances further highlighted the robustness of the optimized devices. The findings underscore Device I’s exceptional promise for high-efficiency Cs2TiBr6-based hybrid perovskite photocells, offering significant potential for forthcoming sustainable solar energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信