fecl3催化羰基-烯烃反应中底物行为的理论研究

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Cory W. Schneider,  and , James J. Devery III*, 
{"title":"fecl3催化羰基-烯烃反应中底物行为的理论研究","authors":"Cory W. Schneider,&nbsp; and ,&nbsp;James J. Devery III*,&nbsp;","doi":"10.1021/acsomega.4c0988010.1021/acsomega.4c09880","DOIUrl":null,"url":null,"abstract":"<p >FeCl<sub>3</sub>-catalyzed ring-closing carbonyl–olefin metathesis is a powerful method for the formation of cyclic olefins. Multiple substrate classes are known to display this reactivity; however, two substrates have been reported to form an oxetane, and do not undergo retro-[2 + 2] fragmentation into the cyclic olefin and a byproduct carbonyl. Specifically, phenanthrene producing polycyclic aromatic hydrocarbons yield an oxetane when electrophilic fluorine is introduced α to the substrate carbonyl. Herein, we report the application of quantum chemical modeling of enthalpies and NBO charges to investigate this divergent reactivity. In particular, the replacement of C–H bonds with C–F bonds eliminates hyperconjugative stabilization of the retro-[2 + 2] transition state. Taken together, this model suggests that charge stabilization at the reactive carbonyl carbon dictates the ability of the oxetane to fragment into the metathesis product. However, we also observe that electron-deficient carbonyls have a significantly lower barrier to Fe(III)-mediated oxetane formation. Balancing the factors implicated by our model, we predict the structures of possible metathesis-active molecules as well as oxetane-forming molecules.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 10","pages":"10283–10293 10283–10293"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09880","citationCount":"0","resultStr":"{\"title\":\"Theoretical Investigations of Substrate Behavior in FeCl3-Catalyzed Carbonyl–Olefin Metathesis\",\"authors\":\"Cory W. Schneider,&nbsp; and ,&nbsp;James J. Devery III*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0988010.1021/acsomega.4c09880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >FeCl<sub>3</sub>-catalyzed ring-closing carbonyl–olefin metathesis is a powerful method for the formation of cyclic olefins. Multiple substrate classes are known to display this reactivity; however, two substrates have been reported to form an oxetane, and do not undergo retro-[2 + 2] fragmentation into the cyclic olefin and a byproduct carbonyl. Specifically, phenanthrene producing polycyclic aromatic hydrocarbons yield an oxetane when electrophilic fluorine is introduced α to the substrate carbonyl. Herein, we report the application of quantum chemical modeling of enthalpies and NBO charges to investigate this divergent reactivity. In particular, the replacement of C–H bonds with C–F bonds eliminates hyperconjugative stabilization of the retro-[2 + 2] transition state. Taken together, this model suggests that charge stabilization at the reactive carbonyl carbon dictates the ability of the oxetane to fragment into the metathesis product. However, we also observe that electron-deficient carbonyls have a significantly lower barrier to Fe(III)-mediated oxetane formation. Balancing the factors implicated by our model, we predict the structures of possible metathesis-active molecules as well as oxetane-forming molecules.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 10\",\"pages\":\"10283–10293 10283–10293\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09880\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c09880\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09880","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

fecl3催化闭合环羰基烯烃复分解是合成环烯烃的有效方法。已知有多种底物类显示这种反应性;然而,据报道,有两种底物可以形成氧乙烷,并且不会发生反向[2 + 2]裂解成环烯烃和副产物羰基。具体来说,当亲电性氟在底物羰基上引入α时,产生菲的多环芳烃产生氧烷。在此,我们报告了应用焓和NBO电荷的量子化学模型来研究这种发散性反应。特别是,用C-F键取代C-H键消除了复古-[2 + 2]过渡态的超共轭稳定性。综上所述,该模型表明,活性羰基碳上的电荷稳定决定了氧乙烷分解成复分解产物的能力。然而,我们也观察到缺电子羰基对Fe(III)介导的氧乙烷形成的屏障明显较低。平衡了我们的模型所涉及的因素,我们预测了可能的合成活性分子的结构以及形成氧乙烷的分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Investigations of Substrate Behavior in FeCl3-Catalyzed Carbonyl–Olefin Metathesis

FeCl3-catalyzed ring-closing carbonyl–olefin metathesis is a powerful method for the formation of cyclic olefins. Multiple substrate classes are known to display this reactivity; however, two substrates have been reported to form an oxetane, and do not undergo retro-[2 + 2] fragmentation into the cyclic olefin and a byproduct carbonyl. Specifically, phenanthrene producing polycyclic aromatic hydrocarbons yield an oxetane when electrophilic fluorine is introduced α to the substrate carbonyl. Herein, we report the application of quantum chemical modeling of enthalpies and NBO charges to investigate this divergent reactivity. In particular, the replacement of C–H bonds with C–F bonds eliminates hyperconjugative stabilization of the retro-[2 + 2] transition state. Taken together, this model suggests that charge stabilization at the reactive carbonyl carbon dictates the ability of the oxetane to fragment into the metathesis product. However, we also observe that electron-deficient carbonyls have a significantly lower barrier to Fe(III)-mediated oxetane formation. Balancing the factors implicated by our model, we predict the structures of possible metathesis-active molecules as well as oxetane-forming molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信