降低 SnSe2 Moiré 超晶格的热导率

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yutong Ran, Chen Meng, Yunpeng Ma, Qian Li and Hongwei Zhu*, 
{"title":"降低 SnSe2 Moiré 超晶格的热导率","authors":"Yutong Ran,&nbsp;Chen Meng,&nbsp;Yunpeng Ma,&nbsp;Qian Li and Hongwei Zhu*,&nbsp;","doi":"10.1021/acsnano.5c0029510.1021/acsnano.5c00295","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) materials with inherently low thermal conductivity offer significant advantages for thermal management due to constrained phonon transport. The introduction of rotational degrees of freedom in layered 2D materials to form Moiré superlattices enables precise modulation of material properties, including electronic band gaps and phonon scattering mechanisms. While simulations have demonstrated that twisted multilayer Moiré structures can significantly reduce thermal conductivity through enhanced scattering and localized phonon modes, experimental progress has been limited due to challenges in synthesizing multilayer superlattices. In this study, we report the in situ synthesis of SnSe<sub>2</sub> nanosheets with twisted multilayer Moiré structures using a scalable chemical vapor deposition method. These superlattices, exhibiting multiple Moiré periods, achieve a significant reduction in thermal conductivity compared to regular multilayer structures, driven by enhanced phonon scattering, lattice mismatch, and localized phonon modes. This work establishes multilayer Moiré superlattices as a promising and scalable platform for engineering low thermal conductivity 2D materials for advanced energy and electronic applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 10","pages":"10452–10460 10452–10460"},"PeriodicalIF":16.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced Thermal Conductivity in SnSe2 Moiré Superlattices\",\"authors\":\"Yutong Ran,&nbsp;Chen Meng,&nbsp;Yunpeng Ma,&nbsp;Qian Li and Hongwei Zhu*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c0029510.1021/acsnano.5c00295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two-dimensional (2D) materials with inherently low thermal conductivity offer significant advantages for thermal management due to constrained phonon transport. The introduction of rotational degrees of freedom in layered 2D materials to form Moiré superlattices enables precise modulation of material properties, including electronic band gaps and phonon scattering mechanisms. While simulations have demonstrated that twisted multilayer Moiré structures can significantly reduce thermal conductivity through enhanced scattering and localized phonon modes, experimental progress has been limited due to challenges in synthesizing multilayer superlattices. In this study, we report the in situ synthesis of SnSe<sub>2</sub> nanosheets with twisted multilayer Moiré structures using a scalable chemical vapor deposition method. These superlattices, exhibiting multiple Moiré periods, achieve a significant reduction in thermal conductivity compared to regular multilayer structures, driven by enhanced phonon scattering, lattice mismatch, and localized phonon modes. This work establishes multilayer Moiré superlattices as a promising and scalable platform for engineering low thermal conductivity 2D materials for advanced energy and electronic applications.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 10\",\"pages\":\"10452–10460 10452–10460\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c00295\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c00295","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)材料具有固有的低导热性,由于受约束的声子传输,为热管理提供了显着的优势。在层状二维材料中引入旋转自由度以形成莫尔超晶格,可以精确调制材料特性,包括电子带隙和声子散射机制。虽然模拟表明,扭曲多层莫尔维尔结构可以通过增强散射和局域声子模式显著降低热导率,但由于合成多层超晶格的挑战,实验进展受到限制。在这项研究中,我们报道了使用可扩展的化学气相沉积方法原位合成具有扭曲多层莫尔纳米结构的SnSe2纳米片。由于声子散射增强、晶格失配和局域声子模式,与常规多层结构相比,这些具有多重摩尔周期的超晶格的热导率显著降低。这项工作建立了多层莫尔维尔超晶格,作为一种有前途的、可扩展的平台,用于先进能源和电子应用的低导热2D材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reduced Thermal Conductivity in SnSe2 Moiré Superlattices

Reduced Thermal Conductivity in SnSe2 Moiré Superlattices

Two-dimensional (2D) materials with inherently low thermal conductivity offer significant advantages for thermal management due to constrained phonon transport. The introduction of rotational degrees of freedom in layered 2D materials to form Moiré superlattices enables precise modulation of material properties, including electronic band gaps and phonon scattering mechanisms. While simulations have demonstrated that twisted multilayer Moiré structures can significantly reduce thermal conductivity through enhanced scattering and localized phonon modes, experimental progress has been limited due to challenges in synthesizing multilayer superlattices. In this study, we report the in situ synthesis of SnSe2 nanosheets with twisted multilayer Moiré structures using a scalable chemical vapor deposition method. These superlattices, exhibiting multiple Moiré periods, achieve a significant reduction in thermal conductivity compared to regular multilayer structures, driven by enhanced phonon scattering, lattice mismatch, and localized phonon modes. This work establishes multilayer Moiré superlattices as a promising and scalable platform for engineering low thermal conductivity 2D materials for advanced energy and electronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信