通过短周期螺旋磁体 MnCoSi 中的自发晶格畸变调制纳米自旋螺旋态

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bei Ding, Shouzhe Dong, Yurong You, Hang Li, Xuekui Xi, Yong-Chang Lau, Houbing Huang, Yuan Yao* and Wenhong Wang*, 
{"title":"通过短周期螺旋磁体 MnCoSi 中的自发晶格畸变调制纳米自旋螺旋态","authors":"Bei Ding,&nbsp;Shouzhe Dong,&nbsp;Yurong You,&nbsp;Hang Li,&nbsp;Xuekui Xi,&nbsp;Yong-Chang Lau,&nbsp;Houbing Huang,&nbsp;Yuan Yao* and Wenhong Wang*,&nbsp;","doi":"10.1021/acsnano.4c1859210.1021/acsnano.4c18592","DOIUrl":null,"url":null,"abstract":"<p >We report the influence of spontaneous lattice distortion on the helical spin spiral states in centrosymmetric helimagnet MnCoSi. With the help of in situ Lorentz transmission electron microscopy, we observed significant distortion─up to 57%─in the helical spin order of MnCoSi thin lamella samples. Our analysis, integrating density functional theory calculations with micromagnetic simulations, confirmed that the spontaneous lattice distortion is induced by the variation in the specimen thickness, which therefore modulates the nearest-neighbor exchange interaction <i>J</i><sub>1</sub> and the next-nearest-neighbor exchange interaction <i>J</i><sub>2</sub>, leading to a change in the spin rotational periodicity. Notably, such a spontaneous lattice distortion can also reduce the critical temperature of the magnetic transition from helix to cycloid. Our findings introduce an additional degree of freedom to effectively tailor the magnetic properties of helimagnets, thereby expanding the possibilities within the emerging field of strain-manipulated spintronics.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 10","pages":"10392–10399 10392–10399"},"PeriodicalIF":16.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating Nanometric Spin Spiral States via Spontaneous Lattice Distortion in a Short Period Helimagnet MnCoSi\",\"authors\":\"Bei Ding,&nbsp;Shouzhe Dong,&nbsp;Yurong You,&nbsp;Hang Li,&nbsp;Xuekui Xi,&nbsp;Yong-Chang Lau,&nbsp;Houbing Huang,&nbsp;Yuan Yao* and Wenhong Wang*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1859210.1021/acsnano.4c18592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report the influence of spontaneous lattice distortion on the helical spin spiral states in centrosymmetric helimagnet MnCoSi. With the help of in situ Lorentz transmission electron microscopy, we observed significant distortion─up to 57%─in the helical spin order of MnCoSi thin lamella samples. Our analysis, integrating density functional theory calculations with micromagnetic simulations, confirmed that the spontaneous lattice distortion is induced by the variation in the specimen thickness, which therefore modulates the nearest-neighbor exchange interaction <i>J</i><sub>1</sub> and the next-nearest-neighbor exchange interaction <i>J</i><sub>2</sub>, leading to a change in the spin rotational periodicity. Notably, such a spontaneous lattice distortion can also reduce the critical temperature of the magnetic transition from helix to cycloid. Our findings introduce an additional degree of freedom to effectively tailor the magnetic properties of helimagnets, thereby expanding the possibilities within the emerging field of strain-manipulated spintronics.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 10\",\"pages\":\"10392–10399 10392–10399\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c18592\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c18592","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了自发晶格畸变对中心对称螺旋形MnCoSi中螺旋自旋螺旋态的影响。在原位洛伦兹透射电镜的帮助下,我们观察到MnCoSi薄片样品的螺旋自旋顺序有显著的畸变──高达57%。我们的分析将密度泛函理论计算与微磁模拟相结合,证实了自发晶格畸变是由试样厚度的变化引起的,因此,试样厚度的变化调节了最近邻交换相互作用J1和次近邻交换相互作用J2,导致自旋旋转周期的变化。值得注意的是,这种自发的晶格畸变也可以降低从螺旋到摆线的磁性转变的临界温度。我们的发现引入了一个额外的自由度来有效地定制helimagnets的磁性,从而扩大了应变操纵自旋电子学新兴领域的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulating Nanometric Spin Spiral States via Spontaneous Lattice Distortion in a Short Period Helimagnet MnCoSi

Modulating Nanometric Spin Spiral States via Spontaneous Lattice Distortion in a Short Period Helimagnet MnCoSi

We report the influence of spontaneous lattice distortion on the helical spin spiral states in centrosymmetric helimagnet MnCoSi. With the help of in situ Lorentz transmission electron microscopy, we observed significant distortion─up to 57%─in the helical spin order of MnCoSi thin lamella samples. Our analysis, integrating density functional theory calculations with micromagnetic simulations, confirmed that the spontaneous lattice distortion is induced by the variation in the specimen thickness, which therefore modulates the nearest-neighbor exchange interaction J1 and the next-nearest-neighbor exchange interaction J2, leading to a change in the spin rotational periodicity. Notably, such a spontaneous lattice distortion can also reduce the critical temperature of the magnetic transition from helix to cycloid. Our findings introduce an additional degree of freedom to effectively tailor the magnetic properties of helimagnets, thereby expanding the possibilities within the emerging field of strain-manipulated spintronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信