增强放射动力学免疫治疗中增强FeMn-NCe双原子放射增敏纳米酶的过氧化物酶模拟活性

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bo Chen, Yinggang Wang, Min Mu, Hui Li, Chenqian Feng, Susu Xiao, Rangrang Fan, Bingwen Zou* and Gang Guo*, 
{"title":"增强放射动力学免疫治疗中增强FeMn-NCe双原子放射增敏纳米酶的过氧化物酶模拟活性","authors":"Bo Chen,&nbsp;Yinggang Wang,&nbsp;Min Mu,&nbsp;Hui Li,&nbsp;Chenqian Feng,&nbsp;Susu Xiao,&nbsp;Rangrang Fan,&nbsp;Bingwen Zou* and Gang Guo*,&nbsp;","doi":"10.1021/acsnano.4c1714810.1021/acsnano.4c17148","DOIUrl":null,"url":null,"abstract":"<p >Dual-atom nanozymes (DAzymes) have garnered considerable attention as catalysts for reactive oxygen species (ROS)-based therapies, effectively leveraging ROS generation within the tumor microenvironment (TME). Herein, we introduce the FeMn-NC<sub>e</sub> DAzymes, which are meticulously engineered for enhanced peroxidase (POD)-mimetic activity and potent radiosensitization to advance radioimmunotherapy. Density functional theory (DFT) calculations reveal that FeMn-NC<sub>e</sub> DAzymes lower the energy barrier and increase the substrate affinity, enabling highly efficient catalytic performance. Within the TME, these DAzymes efficiently convert overexpressed hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) into hydroxyl radicals (<sup>•</sup>OH), potentially activating the cGAS-STING immune pathway. This POD-mimetic catalysis is further accelerated under X-ray irradiation, significantly enhancing radiosensitization. Additionally, a uniform coating of ultrasmall gold nanoparticles on FeMn-NC<sub>e</sub> significantly enhances X-ray absorption within cancer cells. The incorporation of the STING agonist diABZI onto the DAzymes induces long-term antitumor immunity, reprograms the immunosuppressive TME, and effectively suppresses tumor growth and metastasis following a single low-dose X-ray treatment. This work highlights a valuable strategy for designing DAzymes to advance radiodynamic immunotherapy.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 10","pages":"10147–10161 10147–10161"},"PeriodicalIF":16.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting Peroxidase-Mimetic Activity of FeMn-NCe Dual-Atom Radiosensitizing Nanozymes for Augmented Radiodynamic Immunotherapy\",\"authors\":\"Bo Chen,&nbsp;Yinggang Wang,&nbsp;Min Mu,&nbsp;Hui Li,&nbsp;Chenqian Feng,&nbsp;Susu Xiao,&nbsp;Rangrang Fan,&nbsp;Bingwen Zou* and Gang Guo*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1714810.1021/acsnano.4c17148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dual-atom nanozymes (DAzymes) have garnered considerable attention as catalysts for reactive oxygen species (ROS)-based therapies, effectively leveraging ROS generation within the tumor microenvironment (TME). Herein, we introduce the FeMn-NC<sub>e</sub> DAzymes, which are meticulously engineered for enhanced peroxidase (POD)-mimetic activity and potent radiosensitization to advance radioimmunotherapy. Density functional theory (DFT) calculations reveal that FeMn-NC<sub>e</sub> DAzymes lower the energy barrier and increase the substrate affinity, enabling highly efficient catalytic performance. Within the TME, these DAzymes efficiently convert overexpressed hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) into hydroxyl radicals (<sup>•</sup>OH), potentially activating the cGAS-STING immune pathway. This POD-mimetic catalysis is further accelerated under X-ray irradiation, significantly enhancing radiosensitization. Additionally, a uniform coating of ultrasmall gold nanoparticles on FeMn-NC<sub>e</sub> significantly enhances X-ray absorption within cancer cells. The incorporation of the STING agonist diABZI onto the DAzymes induces long-term antitumor immunity, reprograms the immunosuppressive TME, and effectively suppresses tumor growth and metastasis following a single low-dose X-ray treatment. This work highlights a valuable strategy for designing DAzymes to advance radiodynamic immunotherapy.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 10\",\"pages\":\"10147–10161 10147–10161\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c17148\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c17148","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

双原子纳米酶(DAzymes)作为基于活性氧(ROS)的治疗的催化剂已经引起了相当大的关注,它有效地利用了肿瘤微环境(TME)中ROS的产生。在此,我们介绍FeMn-NCe DAzymes,其经过精心设计,可增强过氧化物酶(POD)模拟活性和有效的放射致敏性,以推进放射免疫治疗。密度泛函理论(DFT)计算表明,FeMn-NCe DAzymes降低了能垒,增加了底物亲和力,从而实现了高效的催化性能。在TME中,这些DAzymes有效地将过表达的过氧化氢(H2O2)转化为羟基自由基(•OH),潜在地激活cGAS-STING免疫途径。这种模拟pod的催化作用在x射线照射下进一步加速,显著增强了放射致敏性。此外,在FeMn-NCe上均匀涂覆一层超小的金纳米颗粒,可以显著增强癌细胞对x射线的吸收。在DAzymes中加入STING激动剂diABZI可诱导长期抗肿瘤免疫,重新编程免疫抑制TME,并在单次低剂量x射线治疗后有效抑制肿瘤生长和转移。这项工作强调了设计DAzymes以推进放射动力学免疫治疗的一个有价值的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boosting Peroxidase-Mimetic Activity of FeMn-NCe Dual-Atom Radiosensitizing Nanozymes for Augmented Radiodynamic Immunotherapy

Boosting Peroxidase-Mimetic Activity of FeMn-NCe Dual-Atom Radiosensitizing Nanozymes for Augmented Radiodynamic Immunotherapy

Dual-atom nanozymes (DAzymes) have garnered considerable attention as catalysts for reactive oxygen species (ROS)-based therapies, effectively leveraging ROS generation within the tumor microenvironment (TME). Herein, we introduce the FeMn-NCe DAzymes, which are meticulously engineered for enhanced peroxidase (POD)-mimetic activity and potent radiosensitization to advance radioimmunotherapy. Density functional theory (DFT) calculations reveal that FeMn-NCe DAzymes lower the energy barrier and increase the substrate affinity, enabling highly efficient catalytic performance. Within the TME, these DAzymes efficiently convert overexpressed hydrogen peroxide (H2O2) into hydroxyl radicals (OH), potentially activating the cGAS-STING immune pathway. This POD-mimetic catalysis is further accelerated under X-ray irradiation, significantly enhancing radiosensitization. Additionally, a uniform coating of ultrasmall gold nanoparticles on FeMn-NCe significantly enhances X-ray absorption within cancer cells. The incorporation of the STING agonist diABZI onto the DAzymes induces long-term antitumor immunity, reprograms the immunosuppressive TME, and effectively suppresses tumor growth and metastasis following a single low-dose X-ray treatment. This work highlights a valuable strategy for designing DAzymes to advance radiodynamic immunotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信