通过界面工程和3D架构,使锂离子电池在零下温度下实现6C快速充电

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-03-17 DOI:10.1016/j.joule.2025.101881
Tae H. Cho, Yuxin Chen, Daniel W. Liao, Eric Kazyak, Daniel Penley, Manoj K. Jangid, Neil P. Dasgupta
{"title":"通过界面工程和3D架构,使锂离子电池在零下温度下实现6C快速充电","authors":"Tae H. Cho, Yuxin Chen, Daniel W. Liao, Eric Kazyak, Daniel Penley, Manoj K. Jangid, Neil P. Dasgupta","doi":"10.1016/j.joule.2025.101881","DOIUrl":null,"url":null,"abstract":"Addressing the trilemma between fast-charging, low-temperature operation, and high-energy-density electrodes is critical to advance Li-ion batteries. Here, we introduce a strategy that integrates 3D electrode architectures with an artificial solid-electrolyte interface (SEI) using atomic layer deposition of a solid electrolyte (Li<sub>3</sub>BO<sub>3</sub>-Li<sub>2</sub>CO<sub>3</sub>). These synergistic modifications enhance both mass transport and interfacial kinetics under low temperatures and fast charging, increasing the accessible capacity of thick electrodes (&gt;3 mAh/cm<sup>2</sup>). To decouple the contributions from electrolyte transport and interfacial impedance, graphite/Li<sub>x</sub>Ni<sub>y</sub>Mn<sub>z</sub>Co<sub>a</sub>O (NMC) pouch cells were fabricated and their electrochemical performances were tested under low-temperature, fast-charging conditions. At a 6C-rate and a temperature of −10°C, these integrated electrodes enabled a &gt;500% increase in accessible capacity and &gt;97% capacity retention after 100 cycles, without Li plating. The capacity retention under low-temperature, fast-charging conditions was also dependent on the state-of-charge swing, highlighting the importance of the charging protocol to minimize Li plating.","PeriodicalId":343,"journal":{"name":"Joule","volume":"33 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling 6C fast charging of Li-ion batteries at sub-zero temperatures via interface engineering and 3D architectures\",\"authors\":\"Tae H. Cho, Yuxin Chen, Daniel W. Liao, Eric Kazyak, Daniel Penley, Manoj K. Jangid, Neil P. Dasgupta\",\"doi\":\"10.1016/j.joule.2025.101881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing the trilemma between fast-charging, low-temperature operation, and high-energy-density electrodes is critical to advance Li-ion batteries. Here, we introduce a strategy that integrates 3D electrode architectures with an artificial solid-electrolyte interface (SEI) using atomic layer deposition of a solid electrolyte (Li<sub>3</sub>BO<sub>3</sub>-Li<sub>2</sub>CO<sub>3</sub>). These synergistic modifications enhance both mass transport and interfacial kinetics under low temperatures and fast charging, increasing the accessible capacity of thick electrodes (&gt;3 mAh/cm<sup>2</sup>). To decouple the contributions from electrolyte transport and interfacial impedance, graphite/Li<sub>x</sub>Ni<sub>y</sub>Mn<sub>z</sub>Co<sub>a</sub>O (NMC) pouch cells were fabricated and their electrochemical performances were tested under low-temperature, fast-charging conditions. At a 6C-rate and a temperature of −10°C, these integrated electrodes enabled a &gt;500% increase in accessible capacity and &gt;97% capacity retention after 100 cycles, without Li plating. The capacity retention under low-temperature, fast-charging conditions was also dependent on the state-of-charge swing, highlighting the importance of the charging protocol to minimize Li plating.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.101881\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101881","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

解决快速充电、低温运行和高能量密度电极之间的三难问题对于推动锂离子电池的发展至关重要。在这里,我们介绍了一种利用固体电解质(Li3BO3-Li2CO3)的原子层沉积将三维电极结构与人工固体电解质界面(SEI)相结合的策略。这些协同改性增强了低温和快速充电条件下的质量传输和界面动力学,提高了厚电极的可访问容量(3 mAh/cm2)。为了消除电解质传输和界面阻抗的影响,我们制作了石墨/LixNiyMnzCoaO(NMC)袋装电池,并在低温快速充电条件下测试了它们的电化学性能。在 6C 速率和 -10°C 温度条件下,这些集成电极无需镀锂,即可在 100 个循环后将可访问容量提高 500%,容量保持率达到 97%。低温快速充电条件下的容量保持率也取决于充电状态的波动,这突出表明了充电协议对减少锂镀层的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enabling 6C fast charging of Li-ion batteries at sub-zero temperatures via interface engineering and 3D architectures

Enabling 6C fast charging of Li-ion batteries at sub-zero temperatures via interface engineering and 3D architectures
Addressing the trilemma between fast-charging, low-temperature operation, and high-energy-density electrodes is critical to advance Li-ion batteries. Here, we introduce a strategy that integrates 3D electrode architectures with an artificial solid-electrolyte interface (SEI) using atomic layer deposition of a solid electrolyte (Li3BO3-Li2CO3). These synergistic modifications enhance both mass transport and interfacial kinetics under low temperatures and fast charging, increasing the accessible capacity of thick electrodes (>3 mAh/cm2). To decouple the contributions from electrolyte transport and interfacial impedance, graphite/LixNiyMnzCoaO (NMC) pouch cells were fabricated and their electrochemical performances were tested under low-temperature, fast-charging conditions. At a 6C-rate and a temperature of −10°C, these integrated electrodes enabled a >500% increase in accessible capacity and >97% capacity retention after 100 cycles, without Li plating. The capacity retention under low-temperature, fast-charging conditions was also dependent on the state-of-charge swing, highlighting the importance of the charging protocol to minimize Li plating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信