Tae H. Cho, Yuxin Chen, Daniel W. Liao, Eric Kazyak, Daniel Penley, Manoj K. Jangid, Neil P. Dasgupta
{"title":"通过界面工程和3D架构,使锂离子电池在零下温度下实现6C快速充电","authors":"Tae H. Cho, Yuxin Chen, Daniel W. Liao, Eric Kazyak, Daniel Penley, Manoj K. Jangid, Neil P. Dasgupta","doi":"10.1016/j.joule.2025.101881","DOIUrl":null,"url":null,"abstract":"Addressing the trilemma between fast-charging, low-temperature operation, and high-energy-density electrodes is critical to advance Li-ion batteries. Here, we introduce a strategy that integrates 3D electrode architectures with an artificial solid-electrolyte interface (SEI) using atomic layer deposition of a solid electrolyte (Li<sub>3</sub>BO<sub>3</sub>-Li<sub>2</sub>CO<sub>3</sub>). These synergistic modifications enhance both mass transport and interfacial kinetics under low temperatures and fast charging, increasing the accessible capacity of thick electrodes (>3 mAh/cm<sup>2</sup>). To decouple the contributions from electrolyte transport and interfacial impedance, graphite/Li<sub>x</sub>Ni<sub>y</sub>Mn<sub>z</sub>Co<sub>a</sub>O (NMC) pouch cells were fabricated and their electrochemical performances were tested under low-temperature, fast-charging conditions. At a 6C-rate and a temperature of −10°C, these integrated electrodes enabled a >500% increase in accessible capacity and >97% capacity retention after 100 cycles, without Li plating. The capacity retention under low-temperature, fast-charging conditions was also dependent on the state-of-charge swing, highlighting the importance of the charging protocol to minimize Li plating.","PeriodicalId":343,"journal":{"name":"Joule","volume":"33 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling 6C fast charging of Li-ion batteries at sub-zero temperatures via interface engineering and 3D architectures\",\"authors\":\"Tae H. Cho, Yuxin Chen, Daniel W. Liao, Eric Kazyak, Daniel Penley, Manoj K. Jangid, Neil P. Dasgupta\",\"doi\":\"10.1016/j.joule.2025.101881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing the trilemma between fast-charging, low-temperature operation, and high-energy-density electrodes is critical to advance Li-ion batteries. Here, we introduce a strategy that integrates 3D electrode architectures with an artificial solid-electrolyte interface (SEI) using atomic layer deposition of a solid electrolyte (Li<sub>3</sub>BO<sub>3</sub>-Li<sub>2</sub>CO<sub>3</sub>). These synergistic modifications enhance both mass transport and interfacial kinetics under low temperatures and fast charging, increasing the accessible capacity of thick electrodes (>3 mAh/cm<sup>2</sup>). To decouple the contributions from electrolyte transport and interfacial impedance, graphite/Li<sub>x</sub>Ni<sub>y</sub>Mn<sub>z</sub>Co<sub>a</sub>O (NMC) pouch cells were fabricated and their electrochemical performances were tested under low-temperature, fast-charging conditions. At a 6C-rate and a temperature of −10°C, these integrated electrodes enabled a >500% increase in accessible capacity and >97% capacity retention after 100 cycles, without Li plating. The capacity retention under low-temperature, fast-charging conditions was also dependent on the state-of-charge swing, highlighting the importance of the charging protocol to minimize Li plating.\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2025.101881\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101881","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enabling 6C fast charging of Li-ion batteries at sub-zero temperatures via interface engineering and 3D architectures
Addressing the trilemma between fast-charging, low-temperature operation, and high-energy-density electrodes is critical to advance Li-ion batteries. Here, we introduce a strategy that integrates 3D electrode architectures with an artificial solid-electrolyte interface (SEI) using atomic layer deposition of a solid electrolyte (Li3BO3-Li2CO3). These synergistic modifications enhance both mass transport and interfacial kinetics under low temperatures and fast charging, increasing the accessible capacity of thick electrodes (>3 mAh/cm2). To decouple the contributions from electrolyte transport and interfacial impedance, graphite/LixNiyMnzCoaO (NMC) pouch cells were fabricated and their electrochemical performances were tested under low-temperature, fast-charging conditions. At a 6C-rate and a temperature of −10°C, these integrated electrodes enabled a >500% increase in accessible capacity and >97% capacity retention after 100 cycles, without Li plating. The capacity retention under low-temperature, fast-charging conditions was also dependent on the state-of-charge swing, highlighting the importance of the charging protocol to minimize Li plating.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.