基于li6ps5cl基电解质膜的固体电解质自限反应增强超长寿命全固态锂金属电池

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jianwei Li, Yuanyuan Li, Tao Liu, Shengnan Zhang, Xifei Li, Lijie Ci
{"title":"基于li6ps5cl基电解质膜的固体电解质自限反应增强超长寿命全固态锂金属电池","authors":"Jianwei Li, Yuanyuan Li, Tao Liu, Shengnan Zhang, Xifei Li, Lijie Ci","doi":"10.1002/adfm.202504546","DOIUrl":null,"url":null,"abstract":"Owing to their high energy density and inherent safety, sulfide solid electrolyte membranes (SSEMs) are considered ideal for use in all-solid-state lithium batteries (ASSLBs). However, interfacial reactions between lithium (Li) and the SSEMs significantly hinder the commercial viability of this application of SSEMs. In this study, an interfacial layer is formed in situ on Li surface via a self-limiting reaction between Li and the Li<sub>6</sub>PS<sub>5</sub>Cl (LPSCl) electrolyte. The high interfacial energy and Young's modulus of the interfacial layer suppress the lithium dendrites. Meanwhile, the reduced migration barrier energy and enhanced interfacial compatibility of the interfacial layer with the sulfide electrolyte layer facilitate lithium-ion transport across the interface. Consequently, the cycle life of the assembled symmetric cell surpasses 1000 h at 0.1 mA cm<sup>−2</sup>. ASSLBs show high discharge capacity, superior cycling stability (76.3% capacity retention after 800 cycles at 2.0 C), and excellent rate performance (0.1–5.0 C). Furthermore, the pouch cell demonstrates outstanding electrochemical performance, signifying that assembled sulfide ASSLBs offer considerable potential for commercial application. By providing a simple and effective strategy to improve the interfacial stability between Li and the SSEMs, this research promotes the commercialization of sulfide-based ASSLBs technology aimed at high specific energy and an efficient techno-economic model.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"33 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Limiting Reaction of Solid Electrolyte Empowering Ultralong Lifespan All-Solid-State Lithium Metal Batteries with Li6PS5Cl-Based Electrolyte Membrane\",\"authors\":\"Jianwei Li, Yuanyuan Li, Tao Liu, Shengnan Zhang, Xifei Li, Lijie Ci\",\"doi\":\"10.1002/adfm.202504546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to their high energy density and inherent safety, sulfide solid electrolyte membranes (SSEMs) are considered ideal for use in all-solid-state lithium batteries (ASSLBs). However, interfacial reactions between lithium (Li) and the SSEMs significantly hinder the commercial viability of this application of SSEMs. In this study, an interfacial layer is formed in situ on Li surface via a self-limiting reaction between Li and the Li<sub>6</sub>PS<sub>5</sub>Cl (LPSCl) electrolyte. The high interfacial energy and Young's modulus of the interfacial layer suppress the lithium dendrites. Meanwhile, the reduced migration barrier energy and enhanced interfacial compatibility of the interfacial layer with the sulfide electrolyte layer facilitate lithium-ion transport across the interface. Consequently, the cycle life of the assembled symmetric cell surpasses 1000 h at 0.1 mA cm<sup>−2</sup>. ASSLBs show high discharge capacity, superior cycling stability (76.3% capacity retention after 800 cycles at 2.0 C), and excellent rate performance (0.1–5.0 C). Furthermore, the pouch cell demonstrates outstanding electrochemical performance, signifying that assembled sulfide ASSLBs offer considerable potential for commercial application. By providing a simple and effective strategy to improve the interfacial stability between Li and the SSEMs, this research promotes the commercialization of sulfide-based ASSLBs technology aimed at high specific energy and an efficient techno-economic model.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202504546\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202504546","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硫化物固体电解质膜(SSEM)具有高能量密度和固有安全性,因此被认为是全固态锂电池(ASSLB)的理想材料。然而,锂(Li)与 SSEM 之间的界面反应严重阻碍了 SSEM 在商业上的应用。在本研究中,通过锂与 Li6PS5Cl(LPSCl)电解质之间的自限制反应,在锂表面原位形成了界面层。界面层的高界面能和杨氏模量抑制了锂枝晶的产生。同时,界面层与硫化物电解质层的迁移势垒能降低,界面相容性增强,促进了锂离子在界面上的传输。因此,在 0.1 mA cm-2 的条件下,组装好的对称电池的循环寿命超过了 1000 小时。ASSLB 显示出高放电容量、卓越的循环稳定性(在 2.0 C 下循环 800 次后容量保持率为 76.3%)和出色的速率性能(0.1-5.0 C)。此外,袋式电池还表现出卓越的电化学性能,这表明组装硫化物 ASSLB 具有相当大的商业应用潜力。通过提供一种简单有效的策略来提高锂与 SSEMs 之间的界面稳定性,这项研究促进了以高比能量和高效技术经济模式为目标的硫化物 ASSLBs 技术的商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-Limiting Reaction of Solid Electrolyte Empowering Ultralong Lifespan All-Solid-State Lithium Metal Batteries with Li6PS5Cl-Based Electrolyte Membrane

Self-Limiting Reaction of Solid Electrolyte Empowering Ultralong Lifespan All-Solid-State Lithium Metal Batteries with Li6PS5Cl-Based Electrolyte Membrane
Owing to their high energy density and inherent safety, sulfide solid electrolyte membranes (SSEMs) are considered ideal for use in all-solid-state lithium batteries (ASSLBs). However, interfacial reactions between lithium (Li) and the SSEMs significantly hinder the commercial viability of this application of SSEMs. In this study, an interfacial layer is formed in situ on Li surface via a self-limiting reaction between Li and the Li6PS5Cl (LPSCl) electrolyte. The high interfacial energy and Young's modulus of the interfacial layer suppress the lithium dendrites. Meanwhile, the reduced migration barrier energy and enhanced interfacial compatibility of the interfacial layer with the sulfide electrolyte layer facilitate lithium-ion transport across the interface. Consequently, the cycle life of the assembled symmetric cell surpasses 1000 h at 0.1 mA cm−2. ASSLBs show high discharge capacity, superior cycling stability (76.3% capacity retention after 800 cycles at 2.0 C), and excellent rate performance (0.1–5.0 C). Furthermore, the pouch cell demonstrates outstanding electrochemical performance, signifying that assembled sulfide ASSLBs offer considerable potential for commercial application. By providing a simple and effective strategy to improve the interfacial stability between Li and the SSEMs, this research promotes the commercialization of sulfide-based ASSLBs technology aimed at high specific energy and an efficient techno-economic model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信