金属反铁磁体中轨道角动量关联电荷与自旋转换

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhiqiang Zhu, Lu Cheng, Xiaoguang Xu, Kangkang Meng, Jingyan Zhang, Xiao Deng, Tao Zhu, Hualiang Lv, Renchao Che, Dingfu Shao, Delin Zhang, Yong Wu, Gang Zhang, Yong Jiang
{"title":"金属反铁磁体中轨道角动量关联电荷与自旋转换","authors":"Zhiqiang Zhu,&nbsp;Lu Cheng,&nbsp;Xiaoguang Xu,&nbsp;Kangkang Meng,&nbsp;Jingyan Zhang,&nbsp;Xiao Deng,&nbsp;Tao Zhu,&nbsp;Hualiang Lv,&nbsp;Renchao Che,&nbsp;Dingfu Shao,&nbsp;Delin Zhang,&nbsp;Yong Wu,&nbsp;Gang Zhang,&nbsp;Yong Jiang","doi":"10.1002/adma.202418264","DOIUrl":null,"url":null,"abstract":"<p>Current-induced spin-orbit torque (SOT) allows efficient electrical manipulation on magnetization in spintronic devices. Maximizing the SOT efficiency is a key goal that is pursued via increasing the net spin generation and accumulation. However, spin transport in antiferromagnets is seriously restricted due to the strong antiferromagnetic coupling, which blocks the development of antiferromagnetic-based devices. Here, a significant enhancement of SOT efficiency in Ir<sub>20</sub>Mn<sub>80</sub> (IrMn)-based heterostructure associated with the orbital effect of naturally oxidized Cu (Cu*) bottom layer is reported. Considering the weak spin–orbit coupling of Cu*, the enhancement results from an orbital current generated from charge current at the Cu*/IrMn interface that contributes to spin current in the IrMn layer due to the strong spin–orbit coupling. The SOT efficiency variation with IrMn thickness reveals the process of orbital angular momentum (OAM) transportation and conversion. Moreover, the contribution of orbital current is verified by the critical current density decreasing of SOT-driven magnetization switching in Cu*/IrMn/[Co/Pt]<sub>3</sub> heterostructure. This study opens a path to design high-efficient SOT-based spintronic devices combining the advantages of OAM and metallic antiferromagnets.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 17","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbital Angular Momentum Correlated Charge to Spin Conversion in Metallic Antiferromagnet\",\"authors\":\"Zhiqiang Zhu,&nbsp;Lu Cheng,&nbsp;Xiaoguang Xu,&nbsp;Kangkang Meng,&nbsp;Jingyan Zhang,&nbsp;Xiao Deng,&nbsp;Tao Zhu,&nbsp;Hualiang Lv,&nbsp;Renchao Che,&nbsp;Dingfu Shao,&nbsp;Delin Zhang,&nbsp;Yong Wu,&nbsp;Gang Zhang,&nbsp;Yong Jiang\",\"doi\":\"10.1002/adma.202418264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current-induced spin-orbit torque (SOT) allows efficient electrical manipulation on magnetization in spintronic devices. Maximizing the SOT efficiency is a key goal that is pursued via increasing the net spin generation and accumulation. However, spin transport in antiferromagnets is seriously restricted due to the strong antiferromagnetic coupling, which blocks the development of antiferromagnetic-based devices. Here, a significant enhancement of SOT efficiency in Ir<sub>20</sub>Mn<sub>80</sub> (IrMn)-based heterostructure associated with the orbital effect of naturally oxidized Cu (Cu*) bottom layer is reported. Considering the weak spin–orbit coupling of Cu*, the enhancement results from an orbital current generated from charge current at the Cu*/IrMn interface that contributes to spin current in the IrMn layer due to the strong spin–orbit coupling. The SOT efficiency variation with IrMn thickness reveals the process of orbital angular momentum (OAM) transportation and conversion. Moreover, the contribution of orbital current is verified by the critical current density decreasing of SOT-driven magnetization switching in Cu*/IrMn/[Co/Pt]<sub>3</sub> heterostructure. This study opens a path to design high-efficient SOT-based spintronic devices combining the advantages of OAM and metallic antiferromagnets.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 17\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202418264\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202418264","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电流诱导的自旋轨道转矩(SOT)允许对自旋电子器件的磁化进行有效的电气操纵。最大化SOT效率是通过增加净旋产生和积累来追求的关键目标。然而,由于强反铁磁耦合,严重限制了反铁磁体中的自旋输运,阻碍了基于反铁磁的器件的发展。本文报道了Ir20Mn80 (IrMn)基异质结构中SOT效率的显著提高,这与自然氧化Cu (Cu*)底层的轨道效应有关。考虑到Cu*的弱自旋-轨道耦合,Cu*/IrMn界面上电荷电流产生的轨道电流增强,由于强自旋-轨道耦合,有助于IrMn层的自旋电流。SOT效率随IrMn厚度的变化揭示了轨道角动量(OAM)的传递和转换过程。此外,在Cu*/IrMn/[Co/Pt]3异质结构中,sot驱动的磁化开关临界电流密度的降低验证了轨道电流的贡献。本研究为结合OAM和金属反铁磁体的优点,设计高效的基于sot的自旋电子器件开辟了一条道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Orbital Angular Momentum Correlated Charge to Spin Conversion in Metallic Antiferromagnet

Orbital Angular Momentum Correlated Charge to Spin Conversion in Metallic Antiferromagnet

Orbital Angular Momentum Correlated Charge to Spin Conversion in Metallic Antiferromagnet

Current-induced spin-orbit torque (SOT) allows efficient electrical manipulation on magnetization in spintronic devices. Maximizing the SOT efficiency is a key goal that is pursued via increasing the net spin generation and accumulation. However, spin transport in antiferromagnets is seriously restricted due to the strong antiferromagnetic coupling, which blocks the development of antiferromagnetic-based devices. Here, a significant enhancement of SOT efficiency in Ir20Mn80 (IrMn)-based heterostructure associated with the orbital effect of naturally oxidized Cu (Cu*) bottom layer is reported. Considering the weak spin–orbit coupling of Cu*, the enhancement results from an orbital current generated from charge current at the Cu*/IrMn interface that contributes to spin current in the IrMn layer due to the strong spin–orbit coupling. The SOT efficiency variation with IrMn thickness reveals the process of orbital angular momentum (OAM) transportation and conversion. Moreover, the contribution of orbital current is verified by the critical current density decreasing of SOT-driven magnetization switching in Cu*/IrMn/[Co/Pt]3 heterostructure. This study opens a path to design high-efficient SOT-based spintronic devices combining the advantages of OAM and metallic antiferromagnets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信