沸石约束的Cu单原子团簇在1000小时内稳定地催化CO在1 A cm−2下生成醋酸盐

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yan Wen, Changhong Zhan, Jiacheng Liu, Xinxin Zhuang, Siyu Liu, Tang Yang, Wenqiang Liu, Xiaozhi Liu, Cheng-Wei Kao, Yu-Cheng Huang, Ting-Shan Chan, Zhiwei Hu, Dong Su, Jiajia Han, Nanjun Chen, Xiaoqing Huang
{"title":"沸石约束的Cu单原子团簇在1000小时内稳定地催化CO在1 A cm−2下生成醋酸盐","authors":"Yan Wen, Changhong Zhan, Jiacheng Liu, Xinxin Zhuang, Siyu Liu, Tang Yang, Wenqiang Liu, Xiaozhi Liu, Cheng-Wei Kao, Yu-Cheng Huang, Ting-Shan Chan, Zhiwei Hu, Dong Su, Jiajia Han, Nanjun Chen, Xiaoqing Huang","doi":"10.1038/s41565-025-01892-6","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical CO reduction reaction (CORR) has attracted a surge of research interest in sustainably producing high-value multi-carbon products, such as acetate. Nevertheless, most current CORR catalysts exhibit low acetate current densities, poor longevity and limited acetate selectivity. Here we present a Zeolite Socony Mobil-confined Cu single-atom cluster (CuZSM SACL) for CORR, in which Cu SAs are chemically anchored via robust Cu–O–Si bonds while Cu CLs are physically trapped within the porous framework of zeolite cavities. Consequently, the CuZSM SACL-containing membrane electrode assembly enables a remarkable CO-to-acetate current density of 1.8 A cm<sup>−</sup><sup>2</sup> with a high acetate Faraday efficiency of 71 ± 3%. More importantly, we demonstrate that the Cu-based membrane electrode assembly can stably catalyse CO to acetate at an industrial current density of 1 A cm<sup>−</sup><sup>2</sup> at 2.7 V (Faraday efficiency 61 ± 5%) beyond 1,000 h at atmospheric pressure. This milestone sheds light on high-performing Cu-type catalysts for practical CORR applications.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"51 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zeolite-confined Cu single-atom clusters stably catalyse CO to acetate at 1 A cm−2 beyond 1,000 h\",\"authors\":\"Yan Wen, Changhong Zhan, Jiacheng Liu, Xinxin Zhuang, Siyu Liu, Tang Yang, Wenqiang Liu, Xiaozhi Liu, Cheng-Wei Kao, Yu-Cheng Huang, Ting-Shan Chan, Zhiwei Hu, Dong Su, Jiajia Han, Nanjun Chen, Xiaoqing Huang\",\"doi\":\"10.1038/s41565-025-01892-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electrochemical CO reduction reaction (CORR) has attracted a surge of research interest in sustainably producing high-value multi-carbon products, such as acetate. Nevertheless, most current CORR catalysts exhibit low acetate current densities, poor longevity and limited acetate selectivity. Here we present a Zeolite Socony Mobil-confined Cu single-atom cluster (CuZSM SACL) for CORR, in which Cu SAs are chemically anchored via robust Cu–O–Si bonds while Cu CLs are physically trapped within the porous framework of zeolite cavities. Consequently, the CuZSM SACL-containing membrane electrode assembly enables a remarkable CO-to-acetate current density of 1.8 A cm<sup>−</sup><sup>2</sup> with a high acetate Faraday efficiency of 71 ± 3%. More importantly, we demonstrate that the Cu-based membrane electrode assembly can stably catalyse CO to acetate at an industrial current density of 1 A cm<sup>−</sup><sup>2</sup> at 2.7 V (Faraday efficiency 61 ± 5%) beyond 1,000 h at atmospheric pressure. This milestone sheds light on high-performing Cu-type catalysts for practical CORR applications.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01892-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01892-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学CO还原反应(CORR)引起了人们对可持续生产高价值多碳产品(如醋酸盐)的研究兴趣。然而,目前大多数CORR催化剂表现出低醋酸电流密度,寿命差和有限的醋酸选择性。在这里,我们提出了一种用于CORR的沸石Socony移动限制Cu单原子簇(CuZSM SACL),其中Cu SAs通过坚固的Cu - o - si键被化学锚定,而Cu cl被物理捕获在沸石腔的多孔框架内。因此,CuZSM含sacl的膜电极组件使co -to-乙酸电流密度达到1.8 a cm - 2,乙酸法拉第效率高达71±3%。更重要的是,我们证明了cu基膜电极组件可以在工业电流密度为1 A cm−2,2.7 V(法拉第效率61±5%)下,在大气压下超过1000小时,稳定地催化CO成醋酸盐。这一里程碑揭示了用于实际CORR应用的高性能cu型催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Zeolite-confined Cu single-atom clusters stably catalyse CO to acetate at 1 A cm−2 beyond 1,000 h

Zeolite-confined Cu single-atom clusters stably catalyse CO to acetate at 1 A cm−2 beyond 1,000 h

The electrochemical CO reduction reaction (CORR) has attracted a surge of research interest in sustainably producing high-value multi-carbon products, such as acetate. Nevertheless, most current CORR catalysts exhibit low acetate current densities, poor longevity and limited acetate selectivity. Here we present a Zeolite Socony Mobil-confined Cu single-atom cluster (CuZSM SACL) for CORR, in which Cu SAs are chemically anchored via robust Cu–O–Si bonds while Cu CLs are physically trapped within the porous framework of zeolite cavities. Consequently, the CuZSM SACL-containing membrane electrode assembly enables a remarkable CO-to-acetate current density of 1.8 A cm2 with a high acetate Faraday efficiency of 71 ± 3%. More importantly, we demonstrate that the Cu-based membrane electrode assembly can stably catalyse CO to acetate at an industrial current density of 1 A cm2 at 2.7 V (Faraday efficiency 61 ± 5%) beyond 1,000 h at atmospheric pressure. This milestone sheds light on high-performing Cu-type catalysts for practical CORR applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信