用于高效气隙膜蒸馏的多孔表面滑液(SLIPS)冷凝器。

Yashwant S Yogi, Harsharaj B Parmar, Hamid Fattahi Juybari, Sina Nejati, Akshay K Rao, Rishav Roy, Mojtaba Zarei, Longnan Li, Soumyadip Sett, Abhimanyu Das, Nenad Miljkovic, Justin A Weibel, David M Warsinger
{"title":"用于高效气隙膜蒸馏的多孔表面滑液(SLIPS)冷凝器。","authors":"Yashwant S Yogi, Harsharaj B Parmar, Hamid Fattahi Juybari, Sina Nejati, Akshay K Rao, Rishav Roy, Mojtaba Zarei, Longnan Li, Soumyadip Sett, Abhimanyu Das, Nenad Miljkovic, Justin A Weibel, David M Warsinger","doi":"10.1038/s44172-025-00348-y","DOIUrl":null,"url":null,"abstract":"<p><p>To address growing water scarcity, we must improve the energy efficiency of thermal desalination technologies such as air gap membrane distillation. However, promising functional materials such as slippery liquid infused porous surfaces have not yet implemented for any desalination technology. Here, we fabricate and test slippery liquid infused porous surfaces (using Krytox 16,256 lubricant and CuO nanostructures) in an air gap membrane distillation apparatus. System-level transport models, validated by experimental data, establish a framework for improving performance through enhanced condensation surfaces. Results are obtained across a range of temperatures (50-80 °C), salinities (5-105 g/kg), and module lengths. We find that small air gap thickness and efficient droplet shedding significantly improves performance. The CuO Krytox process achieves these with a conductive-self-limiting coating, high nanostructure rugosity, strong covalent and metallic bonding, high hydrophobicity, minimal droplet pinning sites, and ultra-low contact angle hysteresis. The greatest efficiency enhancement from SLIPS is derived from the improved droplet shedding, which allows for reduced gap sizes without flooding, and is further augmented by the increased permeate flux.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"48"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910583/pdf/","citationCount":"0","resultStr":"{\"title\":\"Slippery liquid infused porous surface (SLIPS) condensers for high efficiency air gap membrane distillation.\",\"authors\":\"Yashwant S Yogi, Harsharaj B Parmar, Hamid Fattahi Juybari, Sina Nejati, Akshay K Rao, Rishav Roy, Mojtaba Zarei, Longnan Li, Soumyadip Sett, Abhimanyu Das, Nenad Miljkovic, Justin A Weibel, David M Warsinger\",\"doi\":\"10.1038/s44172-025-00348-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address growing water scarcity, we must improve the energy efficiency of thermal desalination technologies such as air gap membrane distillation. However, promising functional materials such as slippery liquid infused porous surfaces have not yet implemented for any desalination technology. Here, we fabricate and test slippery liquid infused porous surfaces (using Krytox 16,256 lubricant and CuO nanostructures) in an air gap membrane distillation apparatus. System-level transport models, validated by experimental data, establish a framework for improving performance through enhanced condensation surfaces. Results are obtained across a range of temperatures (50-80 °C), salinities (5-105 g/kg), and module lengths. We find that small air gap thickness and efficient droplet shedding significantly improves performance. The CuO Krytox process achieves these with a conductive-self-limiting coating, high nanostructure rugosity, strong covalent and metallic bonding, high hydrophobicity, minimal droplet pinning sites, and ultra-low contact angle hysteresis. The greatest efficiency enhancement from SLIPS is derived from the improved droplet shedding, which allows for reduced gap sizes without flooding, and is further augmented by the increased permeate flux.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910583/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00348-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00348-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决日益严重的水资源短缺问题,我们必须提高热脱盐技术(如气隙膜蒸馏)的能源效率。然而,有前途的功能材料,如光滑的液体注入多孔表面,尚未用于任何海水淡化技术。在此,我们在气隙膜蒸馏装置中制备并测试了光滑的液体注入多孔表面(使用Krytox 16256润滑剂和CuO纳米结构)。通过实验数据验证的系统级传输模型建立了通过增强冷凝表面来提高性能的框架。结果可以在温度(50-80°C),盐度(5-105 g/kg)和模块长度范围内获得。我们发现小的气隙厚度和有效的液滴脱落显著提高了性能。CuO Krytox工艺通过导电自限涂层、高纳米结构粗糙度、强共价键和金属键、高疏水性、最小液滴钉钉位点和超低接触角迟滞来实现这些目标。滑移的最大效率提高来自于改善的液滴脱落,它允许在不发生驱油的情况下减小间隙尺寸,并通过增加渗透通量进一步增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slippery liquid infused porous surface (SLIPS) condensers for high efficiency air gap membrane distillation.

To address growing water scarcity, we must improve the energy efficiency of thermal desalination technologies such as air gap membrane distillation. However, promising functional materials such as slippery liquid infused porous surfaces have not yet implemented for any desalination technology. Here, we fabricate and test slippery liquid infused porous surfaces (using Krytox 16,256 lubricant and CuO nanostructures) in an air gap membrane distillation apparatus. System-level transport models, validated by experimental data, establish a framework for improving performance through enhanced condensation surfaces. Results are obtained across a range of temperatures (50-80 °C), salinities (5-105 g/kg), and module lengths. We find that small air gap thickness and efficient droplet shedding significantly improves performance. The CuO Krytox process achieves these with a conductive-self-limiting coating, high nanostructure rugosity, strong covalent and metallic bonding, high hydrophobicity, minimal droplet pinning sites, and ultra-low contact angle hysteresis. The greatest efficiency enhancement from SLIPS is derived from the improved droplet shedding, which allows for reduced gap sizes without flooding, and is further augmented by the increased permeate flux.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信