{"title":"利用高通量测序技术研究桃果实真菌群落在整个果实发育季节的动态变化。","authors":"Sibel Öncel, Hilal Özkılınç","doi":"10.1038/s41598-025-93090-6","DOIUrl":null,"url":null,"abstract":"<p><p>The mycobiome is comprised of a rich array of fungal species that compete for resources, and species diversity and prevalence exhibit a dynamic structure under the influence of many factors. While the host fruit develops, the prevalence and the arrangement of fungal species in this mycobiome also change, forming a dynamic microenvironment. In this study, fungal diversity on peach fruit surfaces at different developmental stages have been determined to better understand the changes in fungal diversity and disease occurrence by using metabarcoding of the full ITS region and processing the obtained high-throughput sequencing data with various bioinformatic analyses. It has been found that fungal diversity in early developmental stages is higher, and the diversity declines as the fruit matures, likely due to more prevalent fungal species establishing themselves on the surface as the fruit develops. Additionally, this research reveals that the prevalence of pathogens does not necessarily mean that disease will develop, as pathogenic species were found to be at higher prevalence percentages when compared to non-pathogenic species in healthy fruit samples. This study also identified the Monilinia polystroma species at a molecular level for the first time in Türkiye; however, no symptomatic signals were recorded on the host. The study provides valuable data for mycobiome studies, while also highlighting its importance in optimizing sustainable disease management strategies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8969"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910517/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovering the dynamics of peach fruit mycobiome throughout fruit development season by high-throughput sequencing.\",\"authors\":\"Sibel Öncel, Hilal Özkılınç\",\"doi\":\"10.1038/s41598-025-93090-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mycobiome is comprised of a rich array of fungal species that compete for resources, and species diversity and prevalence exhibit a dynamic structure under the influence of many factors. While the host fruit develops, the prevalence and the arrangement of fungal species in this mycobiome also change, forming a dynamic microenvironment. In this study, fungal diversity on peach fruit surfaces at different developmental stages have been determined to better understand the changes in fungal diversity and disease occurrence by using metabarcoding of the full ITS region and processing the obtained high-throughput sequencing data with various bioinformatic analyses. It has been found that fungal diversity in early developmental stages is higher, and the diversity declines as the fruit matures, likely due to more prevalent fungal species establishing themselves on the surface as the fruit develops. Additionally, this research reveals that the prevalence of pathogens does not necessarily mean that disease will develop, as pathogenic species were found to be at higher prevalence percentages when compared to non-pathogenic species in healthy fruit samples. This study also identified the Monilinia polystroma species at a molecular level for the first time in Türkiye; however, no symptomatic signals were recorded on the host. The study provides valuable data for mycobiome studies, while also highlighting its importance in optimizing sustainable disease management strategies.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"8969\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910517/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-93090-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93090-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Discovering the dynamics of peach fruit mycobiome throughout fruit development season by high-throughput sequencing.
The mycobiome is comprised of a rich array of fungal species that compete for resources, and species diversity and prevalence exhibit a dynamic structure under the influence of many factors. While the host fruit develops, the prevalence and the arrangement of fungal species in this mycobiome also change, forming a dynamic microenvironment. In this study, fungal diversity on peach fruit surfaces at different developmental stages have been determined to better understand the changes in fungal diversity and disease occurrence by using metabarcoding of the full ITS region and processing the obtained high-throughput sequencing data with various bioinformatic analyses. It has been found that fungal diversity in early developmental stages is higher, and the diversity declines as the fruit matures, likely due to more prevalent fungal species establishing themselves on the surface as the fruit develops. Additionally, this research reveals that the prevalence of pathogens does not necessarily mean that disease will develop, as pathogenic species were found to be at higher prevalence percentages when compared to non-pathogenic species in healthy fruit samples. This study also identified the Monilinia polystroma species at a molecular level for the first time in Türkiye; however, no symptomatic signals were recorded on the host. The study provides valuable data for mycobiome studies, while also highlighting its importance in optimizing sustainable disease management strategies.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.