高级电力调度的大型语言模型。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuheng Cheng, Huan Zhao, Xiyuan Zhou, Junhua Zhao, Yuji Cao, Chao Yang, Xinlei Cai
{"title":"高级电力调度的大型语言模型。","authors":"Yuheng Cheng, Huan Zhao, Xiyuan Zhou, Junhua Zhao, Yuji Cao, Chao Yang, Xinlei Cai","doi":"10.1038/s41598-025-91940-x","DOIUrl":null,"url":null,"abstract":"<p><p>Power dispatch is essential for providing society with stable, cost-effective, and eco-friendly electricity. However, traditional methods falter as power systems grow in scale and complexity, struggling with multitasking, swift problem-solving, and human-machine collaboration. This paper introduces Grid Artificial Intelligent Assistant (GAIA), a pioneering Large Language Model (LLM) designed to assist with a variety of power system operational tasks, including operation adjustment, operation monitoring, and black start scenarios. We have developed a novel dataset construction technique that harnesses various data sources to fine-tune GAIA for optimal performance in this domain. This approach streamlines LLM training, allowing for the seamless integration of multidimensional data in power system management. Additionally, we have crafted specialized prompt strategies to boost GAIA's input-output efficiency in dispatch scenarios. When evaluated on the ElecBench benchmark, GAIA surpasses the baseline model Large Language Model Meta AI-2 (LLaMA2) on multiple metrics. In practical applications, GAIA has demonstrated its ability to enhance decision-making processes, improve operational efficiency, and facilitate better human-machine interactions in power dispatch operations. This paper expands the application of LLMs to power dispatch and validates their practical utility, paving the way for future innovations in this field.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8925"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909217/pdf/","citationCount":"0","resultStr":"{\"title\":\"A large language model for advanced power dispatch.\",\"authors\":\"Yuheng Cheng, Huan Zhao, Xiyuan Zhou, Junhua Zhao, Yuji Cao, Chao Yang, Xinlei Cai\",\"doi\":\"10.1038/s41598-025-91940-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Power dispatch is essential for providing society with stable, cost-effective, and eco-friendly electricity. However, traditional methods falter as power systems grow in scale and complexity, struggling with multitasking, swift problem-solving, and human-machine collaboration. This paper introduces Grid Artificial Intelligent Assistant (GAIA), a pioneering Large Language Model (LLM) designed to assist with a variety of power system operational tasks, including operation adjustment, operation monitoring, and black start scenarios. We have developed a novel dataset construction technique that harnesses various data sources to fine-tune GAIA for optimal performance in this domain. This approach streamlines LLM training, allowing for the seamless integration of multidimensional data in power system management. Additionally, we have crafted specialized prompt strategies to boost GAIA's input-output efficiency in dispatch scenarios. When evaluated on the ElecBench benchmark, GAIA surpasses the baseline model Large Language Model Meta AI-2 (LLaMA2) on multiple metrics. In practical applications, GAIA has demonstrated its ability to enhance decision-making processes, improve operational efficiency, and facilitate better human-machine interactions in power dispatch operations. This paper expands the application of LLMs to power dispatch and validates their practical utility, paving the way for future innovations in this field.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"8925\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909217/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-91940-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91940-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

电力调度对于为社会提供稳定、经济、环保的电力至关重要。然而,随着电力系统规模和复杂性的不断扩大,传统方法在多任务处理、快速解决问题和人机协作方面显得力不从心。本文介绍了电网人工智能助理(GAIA),这是一种开创性的大型语言模型(LLM),旨在协助完成各种电力系统运行任务,包括运行调整、运行监控和黑启动场景。我们开发了一种新颖的数据集构建技术,可利用各种数据源对 GAIA 进行微调,使其在该领域发挥最佳性能。这种方法简化了 LLM 训练,使电力系统管理中多维数据的无缝集成成为可能。此外,我们还制定了专门的提示策略,以提高 GAIA 在调度场景中的输入输出效率。在 ElecBench 基准测试中,GAIA 在多个指标上都超过了基准模型 Large Language Model Meta AI-2 (LLaMA2)。在实际应用中,GAIA 已证明其有能力在电力调度操作中增强决策过程、提高操作效率并促进更好的人机互动。本文拓展了 LLM 在电力调度中的应用,并验证了其实际效用,为该领域未来的创新铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A large language model for advanced power dispatch.

Power dispatch is essential for providing society with stable, cost-effective, and eco-friendly electricity. However, traditional methods falter as power systems grow in scale and complexity, struggling with multitasking, swift problem-solving, and human-machine collaboration. This paper introduces Grid Artificial Intelligent Assistant (GAIA), a pioneering Large Language Model (LLM) designed to assist with a variety of power system operational tasks, including operation adjustment, operation monitoring, and black start scenarios. We have developed a novel dataset construction technique that harnesses various data sources to fine-tune GAIA for optimal performance in this domain. This approach streamlines LLM training, allowing for the seamless integration of multidimensional data in power system management. Additionally, we have crafted specialized prompt strategies to boost GAIA's input-output efficiency in dispatch scenarios. When evaluated on the ElecBench benchmark, GAIA surpasses the baseline model Large Language Model Meta AI-2 (LLaMA2) on multiple metrics. In practical applications, GAIA has demonstrated its ability to enhance decision-making processes, improve operational efficiency, and facilitate better human-machine interactions in power dispatch operations. This paper expands the application of LLMs to power dispatch and validates their practical utility, paving the way for future innovations in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信