新的见解,碳水化合物的利用,抗菌素耐药性和产孢潜力在不同地理位置的肠道玫瑰属分离物。

IF 11 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Gut Microbes Pub Date : 2025-12-01 Epub Date: 2025-03-16 DOI:10.1080/19490976.2025.2473516
Indrani Mukhopadhya, Jennifer C Martin, Sophie Shaw, Martin Gutierrez-Torrejon, Nikoleta Boteva, Aileen J McKinley, Silvia W Gratz, Karen P Scott
{"title":"新的见解,碳水化合物的利用,抗菌素耐药性和产孢潜力在不同地理位置的肠道玫瑰属分离物。","authors":"Indrani Mukhopadhya, Jennifer C Martin, Sophie Shaw, Martin Gutierrez-Torrejon, Nikoleta Boteva, Aileen J McKinley, Silvia W Gratz, Karen P Scott","doi":"10.1080/19490976.2025.2473516","DOIUrl":null,"url":null,"abstract":"<p><p><i>Roseburia intestinalis</i> is one of the most abundant and important butyrate-producing human gut anaerobic bacteria that plays an important role in maintaining health and is a potential next-generation probiotic. We investigated the pangenome of 16 distinct strains, isolated over several decades, identifying local and time-specific adaptations. More than 50% of the genes in each individual strain were assigned to the core genome, and 77% of the cloud genes were unique to individual strains, revealing the high level of genome conservation. Co-carriage of the same enzymes involved in carbohydrate binding and degradation in all strains highlighted major pathways in carbohydrate utilization and reveal the importance of xylan, starch and mannose as key growth substrates. A single strain had adapted to use rhamnose as a sole growth substrate, the first time this has been reported. The ubiquitous presence of motility and sporulation gene clusters demonstrates the importance of these phenotypes for gut survival and acquisition of this bacterium. More than half the strains contained functional, potentially transferable, tetracycline resistance genes. This study advances our understanding of the importance of <i>R. intestinalis</i> within the gut ecosystem by elucidating conserved metabolic characteristics among different strains, isolated from different locations. This information will help to devise dietary strategies to increase the abundance of this species providing health benefits.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2473516"},"PeriodicalIF":11.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913394/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel insights into carbohydrate utilisation, antimicrobial resistance, and sporulation potential in <i>Roseburia intestinalis</i> isolates across diverse geographical locations.\",\"authors\":\"Indrani Mukhopadhya, Jennifer C Martin, Sophie Shaw, Martin Gutierrez-Torrejon, Nikoleta Boteva, Aileen J McKinley, Silvia W Gratz, Karen P Scott\",\"doi\":\"10.1080/19490976.2025.2473516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Roseburia intestinalis</i> is one of the most abundant and important butyrate-producing human gut anaerobic bacteria that plays an important role in maintaining health and is a potential next-generation probiotic. We investigated the pangenome of 16 distinct strains, isolated over several decades, identifying local and time-specific adaptations. More than 50% of the genes in each individual strain were assigned to the core genome, and 77% of the cloud genes were unique to individual strains, revealing the high level of genome conservation. Co-carriage of the same enzymes involved in carbohydrate binding and degradation in all strains highlighted major pathways in carbohydrate utilization and reveal the importance of xylan, starch and mannose as key growth substrates. A single strain had adapted to use rhamnose as a sole growth substrate, the first time this has been reported. The ubiquitous presence of motility and sporulation gene clusters demonstrates the importance of these phenotypes for gut survival and acquisition of this bacterium. More than half the strains contained functional, potentially transferable, tetracycline resistance genes. This study advances our understanding of the importance of <i>R. intestinalis</i> within the gut ecosystem by elucidating conserved metabolic characteristics among different strains, isolated from different locations. This information will help to devise dietary strategies to increase the abundance of this species providing health benefits.</p>\",\"PeriodicalId\":12909,\"journal\":{\"name\":\"Gut Microbes\",\"volume\":\"17 1\",\"pages\":\"2473516\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913394/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut Microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19490976.2025.2473516\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2025.2473516","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肠道玫瑰菌是人类肠道中数量最多、最重要的产丁酸盐厌氧菌之一,在维持人体健康中起着重要作用,是潜在的下一代益生菌。我们研究了16种不同菌株的泛基因组,这些菌株在几十年内分离出来,确定了当地和时间特异性的适应性。每个菌株中超过50%的基因被分配到核心基因组中,77%的云基因是单个菌株所特有的,表明基因组的高度保守性。所有菌株中碳水化合物结合和降解酶的共同携带强调了碳水化合物利用的主要途径,并揭示了木聚糖、淀粉和甘露糖作为关键生长底物的重要性。一个单一的菌株已经适应使用鼠李糖作为唯一的生长基质,这是第一次报道。运动和产孢基因簇的普遍存在证明了这些表型对这种细菌的肠道生存和获得的重要性。超过一半的菌株含有功能性的、可能转移的四环素耐药基因。本研究通过阐明从不同地点分离的不同菌株之间的保守代谢特征,提高了我们对肠道生态系统中肠芽孢杆菌重要性的认识。这些信息将有助于制定饮食策略,以增加该物种的丰度,从而对健康有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel insights into carbohydrate utilisation, antimicrobial resistance, and sporulation potential in Roseburia intestinalis isolates across diverse geographical locations.

Roseburia intestinalis is one of the most abundant and important butyrate-producing human gut anaerobic bacteria that plays an important role in maintaining health and is a potential next-generation probiotic. We investigated the pangenome of 16 distinct strains, isolated over several decades, identifying local and time-specific adaptations. More than 50% of the genes in each individual strain were assigned to the core genome, and 77% of the cloud genes were unique to individual strains, revealing the high level of genome conservation. Co-carriage of the same enzymes involved in carbohydrate binding and degradation in all strains highlighted major pathways in carbohydrate utilization and reveal the importance of xylan, starch and mannose as key growth substrates. A single strain had adapted to use rhamnose as a sole growth substrate, the first time this has been reported. The ubiquitous presence of motility and sporulation gene clusters demonstrates the importance of these phenotypes for gut survival and acquisition of this bacterium. More than half the strains contained functional, potentially transferable, tetracycline resistance genes. This study advances our understanding of the importance of R. intestinalis within the gut ecosystem by elucidating conserved metabolic characteristics among different strains, isolated from different locations. This information will help to devise dietary strategies to increase the abundance of this species providing health benefits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gut Microbes
Gut Microbes Medicine-Microbiology (medical)
CiteScore
18.20
自引率
3.30%
发文量
196
审稿时长
10 weeks
期刊介绍: The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more. Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信