评估人工智能与精准营养之间的联系。

IF 5.5 3区 医学 Q1 NUTRITION & DIETETICS
Danton Diego Ferreira, Lívia Garcia Ferreira, Katiúcia Alves Amorim, Deyvis Cabrini Teixeira Delfino, Ana Cláudia Barbosa Honório Ferreira, Leandra Passarelli Castro E Souza
{"title":"评估人工智能与精准营养之间的联系。","authors":"Danton Diego Ferreira, Lívia Garcia Ferreira, Katiúcia Alves Amorim, Deyvis Cabrini Teixeira Delfino, Ana Cláudia Barbosa Honório Ferreira, Leandra Passarelli Castro E Souza","doi":"10.1007/s13668-025-00635-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>To conduct an overview of the potentialities of artificial intelligence in precision nutrition.</p><p><strong>Recent findings: </strong>A keyword co-occurrence analysis of 654 studies on artificial intelligence (AI) and precision nutrition (PN) highlighted the potential of AI techniques like Random Forest and Gradient Boosting in improving personalized dietary recommendations. These methods address gastrointestinal symptoms, weight management, and cardiometabolic markers, especially when incorporating data on gut microbiota. Despite its promise, challenges like data privacy, bias, and ethical concerns remain. AI must complement healthcare professionals, necessitating clear guidelines, robust governance, and ongoing research to ensure safe and effective applications. The integration of AI into PN enables highly personalized dietary recommendations by accounting for metabolic variability, genetics, and microbiome data. AI-driven strategies show potential in managing conditions like obesity and diabetes through accurate predictions of individual dietary responses. However, ethical, regulatory, and practical challenges must be addressed to ensure safe, equitable, and effective application of AI in nutrition.</p>","PeriodicalId":10844,"journal":{"name":"Current Nutrition Reports","volume":"14 1","pages":"47"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the Links Between Artificial Intelligence and Precision Nutrition.\",\"authors\":\"Danton Diego Ferreira, Lívia Garcia Ferreira, Katiúcia Alves Amorim, Deyvis Cabrini Teixeira Delfino, Ana Cláudia Barbosa Honório Ferreira, Leandra Passarelli Castro E Souza\",\"doi\":\"10.1007/s13668-025-00635-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>To conduct an overview of the potentialities of artificial intelligence in precision nutrition.</p><p><strong>Recent findings: </strong>A keyword co-occurrence analysis of 654 studies on artificial intelligence (AI) and precision nutrition (PN) highlighted the potential of AI techniques like Random Forest and Gradient Boosting in improving personalized dietary recommendations. These methods address gastrointestinal symptoms, weight management, and cardiometabolic markers, especially when incorporating data on gut microbiota. Despite its promise, challenges like data privacy, bias, and ethical concerns remain. AI must complement healthcare professionals, necessitating clear guidelines, robust governance, and ongoing research to ensure safe and effective applications. The integration of AI into PN enables highly personalized dietary recommendations by accounting for metabolic variability, genetics, and microbiome data. AI-driven strategies show potential in managing conditions like obesity and diabetes through accurate predictions of individual dietary responses. However, ethical, regulatory, and practical challenges must be addressed to ensure safe, equitable, and effective application of AI in nutrition.</p>\",\"PeriodicalId\":10844,\"journal\":{\"name\":\"Current Nutrition Reports\",\"volume\":\"14 1\",\"pages\":\"47\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nutrition Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13668-025-00635-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nutrition Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13668-025-00635-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

摘要

综述目的:综述人工智能在精准营养领域的潜力。最近的发现:对654项关于人工智能(AI)和精确营养(PN)的研究进行了关键词共现分析,强调了随机森林和梯度增强等人工智能技术在改善个性化饮食建议方面的潜力。这些方法涉及胃肠道症状、体重管理和心脏代谢标志物,特别是当纳入肠道微生物群数据时。尽管前景光明,但数据隐私、偏见和道德问题等挑战仍然存在。人工智能必须补充医疗保健专业人员,需要明确的指导方针、健全的治理和持续的研究,以确保安全有效的应用。将人工智能集成到PN中,通过考虑代谢变异性、遗传学和微生物组数据,可以实现高度个性化的饮食建议。人工智能驱动的策略通过准确预测个人饮食反应,显示出在管理肥胖和糖尿病等疾病方面的潜力。然而,必须解决伦理、监管和实践方面的挑战,以确保人工智能在营养领域的安全、公平和有效应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the Links Between Artificial Intelligence and Precision Nutrition.

Purpose of review: To conduct an overview of the potentialities of artificial intelligence in precision nutrition.

Recent findings: A keyword co-occurrence analysis of 654 studies on artificial intelligence (AI) and precision nutrition (PN) highlighted the potential of AI techniques like Random Forest and Gradient Boosting in improving personalized dietary recommendations. These methods address gastrointestinal symptoms, weight management, and cardiometabolic markers, especially when incorporating data on gut microbiota. Despite its promise, challenges like data privacy, bias, and ethical concerns remain. AI must complement healthcare professionals, necessitating clear guidelines, robust governance, and ongoing research to ensure safe and effective applications. The integration of AI into PN enables highly personalized dietary recommendations by accounting for metabolic variability, genetics, and microbiome data. AI-driven strategies show potential in managing conditions like obesity and diabetes through accurate predictions of individual dietary responses. However, ethical, regulatory, and practical challenges must be addressed to ensure safe, equitable, and effective application of AI in nutrition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Nutrition Reports
Current Nutrition Reports Agricultural and Biological Sciences-Food Science
CiteScore
7.70
自引率
2.00%
发文量
59
期刊介绍: This journal aims to provide comprehensive review articles that emphasize significant developments in nutrition research emerging in recent publications. By presenting clear, insightful, balanced contributions by international experts, the journal intends to discuss the influence of nutrition on major health conditions such as diabetes, cardiovascular disease, cancer, and obesity, as well as the impact of nutrition on genetics, metabolic function, and public health. We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas across the field. Section Editors select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. We also provide commentaries from well-known figures in the field, and an Editorial Board of more than 25 internationally diverse members reviews the annual table of contents, suggests topics of special importance to their country/region, and ensures that topics and current and include emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信