{"title":"mPEG-PCL改性咖啡酸滴眼液治疗内毒素性葡萄膜炎。","authors":"Yiping Wu, Lixu Wang, Chengda Hu, Ruikang Tian","doi":"10.1038/s41598-025-94296-4","DOIUrl":null,"url":null,"abstract":"<p><p>The modulation of inflammatory mediators has emerged as a critical therapeutic strategy in uveitis management. Current nonsteroidal anti-inflammatory therapies face limitations due to systemic side effects. Caffeic acid (CA), a natural polyphenol with anti-inflammatory properties, holds therapeutic potential but suffers from poor solubility and ocular irritation. This study aimed to develop mPEG-PCL-modified CA-loaded nanoparticles (NanoCA) as a non-invasive eye drop formulation to enhance CA's solubility, bioavailability, and efficacy in treating endotoxin-induced uveitis (EIU). NanoCA was synthesized via the thin-film hydration method, characterized for size, zeta potential, drug loading, and release profile. Cytotoxicity was assessed in human corneal epithelial and RAW264.7 cells. Ocular tolerance was tested via slit-lamp and histopathological examinations. In vivo efficacy was evaluated in an EIU rat model using clinical scoring, histopathology, and immunofluorescence. NanoCA formed uniform nanospheres (42.40 ± 0.22 nm, -0.97 mV) with high encapsulation efficiency (99.17%). It exhibited sustained release over 12 h and reduced cytotoxicity compared to free CA. In EIU rats, NanoCA significantly suppressed inflammation, downregulated CD68 expression, and preserved aqueous barrier integrity. Histopathology confirmed minimal inflammatory infiltrates in NanoCA-treated eyes. The formulation demonstrated excellent ocular biocompatibility without corneal damage. NanoCA eye drops offer a safe, non-invasive therapeutic strategy for EIU, combining enhanced anti-inflammatory efficacy with high ocular tolerance. This nanoformulation presents a promising alternative to conventional CA delivery methods.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9018"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910657/pdf/","citationCount":"0","resultStr":"{\"title\":\"mPEG-PCL modified Caffeic acid eye drops for endotoxin-induced uveitis treatment.\",\"authors\":\"Yiping Wu, Lixu Wang, Chengda Hu, Ruikang Tian\",\"doi\":\"10.1038/s41598-025-94296-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The modulation of inflammatory mediators has emerged as a critical therapeutic strategy in uveitis management. Current nonsteroidal anti-inflammatory therapies face limitations due to systemic side effects. Caffeic acid (CA), a natural polyphenol with anti-inflammatory properties, holds therapeutic potential but suffers from poor solubility and ocular irritation. This study aimed to develop mPEG-PCL-modified CA-loaded nanoparticles (NanoCA) as a non-invasive eye drop formulation to enhance CA's solubility, bioavailability, and efficacy in treating endotoxin-induced uveitis (EIU). NanoCA was synthesized via the thin-film hydration method, characterized for size, zeta potential, drug loading, and release profile. Cytotoxicity was assessed in human corneal epithelial and RAW264.7 cells. Ocular tolerance was tested via slit-lamp and histopathological examinations. In vivo efficacy was evaluated in an EIU rat model using clinical scoring, histopathology, and immunofluorescence. NanoCA formed uniform nanospheres (42.40 ± 0.22 nm, -0.97 mV) with high encapsulation efficiency (99.17%). It exhibited sustained release over 12 h and reduced cytotoxicity compared to free CA. In EIU rats, NanoCA significantly suppressed inflammation, downregulated CD68 expression, and preserved aqueous barrier integrity. Histopathology confirmed minimal inflammatory infiltrates in NanoCA-treated eyes. The formulation demonstrated excellent ocular biocompatibility without corneal damage. NanoCA eye drops offer a safe, non-invasive therapeutic strategy for EIU, combining enhanced anti-inflammatory efficacy with high ocular tolerance. This nanoformulation presents a promising alternative to conventional CA delivery methods.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9018\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910657/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-94296-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-94296-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
mPEG-PCL modified Caffeic acid eye drops for endotoxin-induced uveitis treatment.
The modulation of inflammatory mediators has emerged as a critical therapeutic strategy in uveitis management. Current nonsteroidal anti-inflammatory therapies face limitations due to systemic side effects. Caffeic acid (CA), a natural polyphenol with anti-inflammatory properties, holds therapeutic potential but suffers from poor solubility and ocular irritation. This study aimed to develop mPEG-PCL-modified CA-loaded nanoparticles (NanoCA) as a non-invasive eye drop formulation to enhance CA's solubility, bioavailability, and efficacy in treating endotoxin-induced uveitis (EIU). NanoCA was synthesized via the thin-film hydration method, characterized for size, zeta potential, drug loading, and release profile. Cytotoxicity was assessed in human corneal epithelial and RAW264.7 cells. Ocular tolerance was tested via slit-lamp and histopathological examinations. In vivo efficacy was evaluated in an EIU rat model using clinical scoring, histopathology, and immunofluorescence. NanoCA formed uniform nanospheres (42.40 ± 0.22 nm, -0.97 mV) with high encapsulation efficiency (99.17%). It exhibited sustained release over 12 h and reduced cytotoxicity compared to free CA. In EIU rats, NanoCA significantly suppressed inflammation, downregulated CD68 expression, and preserved aqueous barrier integrity. Histopathology confirmed minimal inflammatory infiltrates in NanoCA-treated eyes. The formulation demonstrated excellent ocular biocompatibility without corneal damage. NanoCA eye drops offer a safe, non-invasive therapeutic strategy for EIU, combining enhanced anti-inflammatory efficacy with high ocular tolerance. This nanoformulation presents a promising alternative to conventional CA delivery methods.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.