利用机器学习预测霍尔效应离子源的性能

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Jaehong Park, Guentae Doh, Dongho Lee, Youngho Kim, Changmin Shin, Su-Jin Shin, Young-Chul Ghim, Sanghoo Park, Wonho Choe
{"title":"利用机器学习预测霍尔效应离子源的性能","authors":"Jaehong Park,&nbsp;Guentae Doh,&nbsp;Dongho Lee,&nbsp;Youngho Kim,&nbsp;Changmin Shin,&nbsp;Su-Jin Shin,&nbsp;Young-Chul Ghim,&nbsp;Sanghoo Park,&nbsp;Wonho Choe","doi":"10.1002/aisy.202400555","DOIUrl":null,"url":null,"abstract":"<p>Accurate performance prediction methods are essential for the development of high-efficiency Hall effect ion sources, which are employed in industries ranging from material surface treatment to spacecraft electric propulsion (known as Hall thrusters). Traditional methods rely on simplified scaling laws and computationally intensive numerical simulations. Herein, a robust machine learning model is introduced that uses a neural network ensemble to predict the performance of Hall effect ion sources based on design parameters such as discharge channel dimensions and magnetic field structure. The neural networks are trained using 18 000 data points generated from numerical simulations with input powers ranging from sub-kW- to kW-class. The accuracy of the developed machine learning model is demonstrated using untrained 700 W- and 1 kW-class Hall effect ion sources, producing results with deviations of less than 10% compared to the experimentally measured thrust and discharge current, thus surpassing the accuracy of conventional scaling laws. As a high-fidelity surrogate for numerical simulations, the proposed prediction tool provides high prediction accuracy and calculation speed, offering an excellent complement to conventional scaling laws and enhancing the understanding of Hall effect ion source performance characteristics.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400555","citationCount":"0","resultStr":"{\"title\":\"Predicting Performance of Hall Effect Ion Source Using Machine Learning\",\"authors\":\"Jaehong Park,&nbsp;Guentae Doh,&nbsp;Dongho Lee,&nbsp;Youngho Kim,&nbsp;Changmin Shin,&nbsp;Su-Jin Shin,&nbsp;Young-Chul Ghim,&nbsp;Sanghoo Park,&nbsp;Wonho Choe\",\"doi\":\"10.1002/aisy.202400555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate performance prediction methods are essential for the development of high-efficiency Hall effect ion sources, which are employed in industries ranging from material surface treatment to spacecraft electric propulsion (known as Hall thrusters). Traditional methods rely on simplified scaling laws and computationally intensive numerical simulations. Herein, a robust machine learning model is introduced that uses a neural network ensemble to predict the performance of Hall effect ion sources based on design parameters such as discharge channel dimensions and magnetic field structure. The neural networks are trained using 18 000 data points generated from numerical simulations with input powers ranging from sub-kW- to kW-class. The accuracy of the developed machine learning model is demonstrated using untrained 700 W- and 1 kW-class Hall effect ion sources, producing results with deviations of less than 10% compared to the experimentally measured thrust and discharge current, thus surpassing the accuracy of conventional scaling laws. As a high-fidelity surrogate for numerical simulations, the proposed prediction tool provides high prediction accuracy and calculation speed, offering an excellent complement to conventional scaling laws and enhancing the understanding of Hall effect ion source performance characteristics.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400555\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting Performance of Hall Effect Ion Source Using Machine Learning

Predicting Performance of Hall Effect Ion Source Using Machine Learning

Accurate performance prediction methods are essential for the development of high-efficiency Hall effect ion sources, which are employed in industries ranging from material surface treatment to spacecraft electric propulsion (known as Hall thrusters). Traditional methods rely on simplified scaling laws and computationally intensive numerical simulations. Herein, a robust machine learning model is introduced that uses a neural network ensemble to predict the performance of Hall effect ion sources based on design parameters such as discharge channel dimensions and magnetic field structure. The neural networks are trained using 18 000 data points generated from numerical simulations with input powers ranging from sub-kW- to kW-class. The accuracy of the developed machine learning model is demonstrated using untrained 700 W- and 1 kW-class Hall effect ion sources, producing results with deviations of less than 10% compared to the experimentally measured thrust and discharge current, thus surpassing the accuracy of conventional scaling laws. As a high-fidelity surrogate for numerical simulations, the proposed prediction tool provides high prediction accuracy and calculation speed, offering an excellent complement to conventional scaling laws and enhancing the understanding of Hall effect ion source performance characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信