Na3.5(MnVFeTi)0.5(PO4)3:用于钠离子电池的多过渡金属离子工程 NASICON 型阴极

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Vaiyapuri Soundharrajan, Ghalib Alfaza, Anindityo Arifiadi, Demelash Feleke, Subramanian Nithiananth, JunJi Piao, Zhiyuan Zeng, Duong Tung Pham, Chunjoong Kim, Jaekook Kim
{"title":"Na3.5(MnVFeTi)0.5(PO4)3:用于钠离子电池的多过渡金属离子工程 NASICON 型阴极","authors":"Vaiyapuri Soundharrajan,&nbsp;Ghalib Alfaza,&nbsp;Anindityo Arifiadi,&nbsp;Demelash Feleke,&nbsp;Subramanian Nithiananth,&nbsp;JunJi Piao,&nbsp;Zhiyuan Zeng,&nbsp;Duong Tung Pham,&nbsp;Chunjoong Kim,&nbsp;Jaekook Kim","doi":"10.1002/batt.202400526","DOIUrl":null,"url":null,"abstract":"<p>Electrochemically active Na-superionic conductor (NASICON)-type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi-electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASICON-type cathode i. e., carbon coated Na<sub>3.5</sub>(MnVFeTi)<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> (NMVFTP/C) for Na-ion batteries (NIBs). The NMVFTP/C cathode engineered in this study demonstrated stable Na<sup>+</sup>-storage capacity, including long-term cycling stability up to 4000 cycles at 3000 mA g<sup>−1</sup> with 96 % capacity retention and a high-rate output capacity of 85.16 mAh g<sup>−1</sup> at 2500 mA g<sup>−1</sup>. To elucidate the ion transport process within the cathode, density functional theory modeling was employed. The low energy barrier for the diffusion of Na<sup>+</sup> in the NMVFTP/C materials was proved to be a key factor supporting our material's superior electrochemical performances.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Na3.5(MnVFeTi)0.5(PO4)3: A Multi-Transition-Metal-Ion-Engineered NASICON-Type Cathodes for Sodium Ion Batteries\",\"authors\":\"Vaiyapuri Soundharrajan,&nbsp;Ghalib Alfaza,&nbsp;Anindityo Arifiadi,&nbsp;Demelash Feleke,&nbsp;Subramanian Nithiananth,&nbsp;JunJi Piao,&nbsp;Zhiyuan Zeng,&nbsp;Duong Tung Pham,&nbsp;Chunjoong Kim,&nbsp;Jaekook Kim\",\"doi\":\"10.1002/batt.202400526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemically active Na-superionic conductor (NASICON)-type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi-electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASICON-type cathode i. e., carbon coated Na<sub>3.5</sub>(MnVFeTi)<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> (NMVFTP/C) for Na-ion batteries (NIBs). The NMVFTP/C cathode engineered in this study demonstrated stable Na<sup>+</sup>-storage capacity, including long-term cycling stability up to 4000 cycles at 3000 mA g<sup>−1</sup> with 96 % capacity retention and a high-rate output capacity of 85.16 mAh g<sup>−1</sup> at 2500 mA g<sup>−1</sup>. To elucidate the ion transport process within the cathode, density functional theory modeling was employed. The low energy barrier for the diffusion of Na<sup>+</sup> in the NMVFTP/C materials was proved to be a key factor supporting our material's superior electrochemical performances.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400526\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400526","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Na3.5(MnVFeTi)0.5(PO4)3: A Multi-Transition-Metal-Ion-Engineered NASICON-Type Cathodes for Sodium Ion Batteries

Na3.5(MnVFeTi)0.5(PO4)3: A Multi-Transition-Metal-Ion-Engineered NASICON-Type Cathodes for Sodium Ion Batteries

Electrochemically active Na-superionic conductor (NASICON)-type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi-electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASICON-type cathode i. e., carbon coated Na3.5(MnVFeTi)0.5(PO4)3 (NMVFTP/C) for Na-ion batteries (NIBs). The NMVFTP/C cathode engineered in this study demonstrated stable Na+-storage capacity, including long-term cycling stability up to 4000 cycles at 3000 mA g−1 with 96 % capacity retention and a high-rate output capacity of 85.16 mAh g−1 at 2500 mA g−1. To elucidate the ion transport process within the cathode, density functional theory modeling was employed. The low energy barrier for the diffusion of Na+ in the NMVFTP/C materials was proved to be a key factor supporting our material's superior electrochemical performances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信