钠离子电池用不可燃磷酸三乙酯电解质盐的研究

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Wessel W. A. Van Ekeren, Lasse Dettmann, Yonas Tesfamhret, Andrew J. Naylor, Reza Younesi
{"title":"钠离子电池用不可燃磷酸三乙酯电解质盐的研究","authors":"Wessel W. A. Van Ekeren,&nbsp;Lasse Dettmann,&nbsp;Yonas Tesfamhret,&nbsp;Andrew J. Naylor,&nbsp;Reza Younesi","doi":"10.1002/batt.202400489","DOIUrl":null,"url":null,"abstract":"<p>Five different electrolyte salts, namely NaBF<sub>4</sub>, NaClO<sub>4</sub>, NaDFOB, NaFSI and NaPF<sub>6</sub>, were evaluated in non-flammable triethyl phosphate (TEP) based electrolyte solutions in sodium-ion full-cells using high-mass loading Prussian white and hard carbon electrodes. Their impact on the viscosity, ionic conductivity and solvation structure was analyzed, revealing that NaFSI-based electrolytes exhibited a stronger interaction with TEP and less ion-pairing than the other salts, resulting in the highest ionic conductivity at a concentration of 0.8 <i>m</i> (mol/kg). Galvanostatic cycling experiments showed that none of the electrolyte salts dissolved in TEP forms an efficient passivation layer. However, adding 1 wt.% vinylene carbonate (VC) significantly improved cycling performance for the cells with NaBF<sub>4</sub>, NaDFOB or NaFSI, but not with NaClO<sub>4</sub> or NaPF<sub>6</sub>. Additionally, NaFSI in TEP with 1 wt.% VC electrolyte solution showed minimal gas evolution during the formation cycling (&lt;8 mbar). In a 1 Ah multilayer pouch cell, 0.8 <i>m</i> NaFSI in TEP with 1 wt.% VC showed promising results with 88 % capacity retention after 200 cycles. X-ray photoelectron spectroscopy analysis indicated that the addition of VC results in the formation of a thin SEI and minimized TEP decomposition, particularly for 0.8 m NaFSI TEP with 1 wt.% VC. This study lays the groundwork for safer liquid electrolytes and integrating them into near-to-commercial cell setups.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400489","citationCount":"0","resultStr":"{\"title\":\"Investigation of Electrolyte Salts in Non-Flammable Triethyl Phosphate for Sodium-Ion Batteries\",\"authors\":\"Wessel W. A. Van Ekeren,&nbsp;Lasse Dettmann,&nbsp;Yonas Tesfamhret,&nbsp;Andrew J. Naylor,&nbsp;Reza Younesi\",\"doi\":\"10.1002/batt.202400489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Five different electrolyte salts, namely NaBF<sub>4</sub>, NaClO<sub>4</sub>, NaDFOB, NaFSI and NaPF<sub>6</sub>, were evaluated in non-flammable triethyl phosphate (TEP) based electrolyte solutions in sodium-ion full-cells using high-mass loading Prussian white and hard carbon electrodes. Their impact on the viscosity, ionic conductivity and solvation structure was analyzed, revealing that NaFSI-based electrolytes exhibited a stronger interaction with TEP and less ion-pairing than the other salts, resulting in the highest ionic conductivity at a concentration of 0.8 <i>m</i> (mol/kg). Galvanostatic cycling experiments showed that none of the electrolyte salts dissolved in TEP forms an efficient passivation layer. However, adding 1 wt.% vinylene carbonate (VC) significantly improved cycling performance for the cells with NaBF<sub>4</sub>, NaDFOB or NaFSI, but not with NaClO<sub>4</sub> or NaPF<sub>6</sub>. Additionally, NaFSI in TEP with 1 wt.% VC electrolyte solution showed minimal gas evolution during the formation cycling (&lt;8 mbar). In a 1 Ah multilayer pouch cell, 0.8 <i>m</i> NaFSI in TEP with 1 wt.% VC showed promising results with 88 % capacity retention after 200 cycles. X-ray photoelectron spectroscopy analysis indicated that the addition of VC results in the formation of a thin SEI and minimized TEP decomposition, particularly for 0.8 m NaFSI TEP with 1 wt.% VC. This study lays the groundwork for safer liquid electrolytes and integrating them into near-to-commercial cell setups.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400489\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400489\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400489","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

采用高质量负载普鲁士白和硬碳电极,研究了NaBF4、NaClO4、NaDFOB、NaFSI和NaPF6五种不同的电解质盐在钠离子电池中不可燃磷酸三乙酯(TEP)电解质溶液中的性能。结果表明,nafsi基电解质与TEP的相互作用较强,离子配对较少,在浓度为0.8 m (mol/kg)时离子电导率最高。恒流循环实验表明,溶在TEP中的电解质盐均未形成有效的钝化层。然而,加入1 wt。碳酸丙烯酯(VC)对NaBF4、NaDFOB和NaFSI的循环性能有显著改善,而对NaClO4和NaPF6的循环性能无显著改善。此外,NaFSI在TEP与1 wt。% VC电解质溶液在地层循环(< 8mbar)中显示出最小的气体释放。在1 Ah多层袋状细胞中,0.8 m NaFSI在TEP中加入1 wt。% VC在200次循环后显示出良好的效果,容量保留率为88%。x射线光电子能谱分析表明,VC的加入导致了薄SEI的形成,并减少了TEP的分解,特别是对于0.8 m NaFSI TEP, 1 wt。% VC。这项研究为更安全的液体电解质奠定了基础,并将其整合到接近商业化的电池装置中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of Electrolyte Salts in Non-Flammable Triethyl Phosphate for Sodium-Ion Batteries

Investigation of Electrolyte Salts in Non-Flammable Triethyl Phosphate for Sodium-Ion Batteries

Five different electrolyte salts, namely NaBF4, NaClO4, NaDFOB, NaFSI and NaPF6, were evaluated in non-flammable triethyl phosphate (TEP) based electrolyte solutions in sodium-ion full-cells using high-mass loading Prussian white and hard carbon electrodes. Their impact on the viscosity, ionic conductivity and solvation structure was analyzed, revealing that NaFSI-based electrolytes exhibited a stronger interaction with TEP and less ion-pairing than the other salts, resulting in the highest ionic conductivity at a concentration of 0.8 m (mol/kg). Galvanostatic cycling experiments showed that none of the electrolyte salts dissolved in TEP forms an efficient passivation layer. However, adding 1 wt.% vinylene carbonate (VC) significantly improved cycling performance for the cells with NaBF4, NaDFOB or NaFSI, but not with NaClO4 or NaPF6. Additionally, NaFSI in TEP with 1 wt.% VC electrolyte solution showed minimal gas evolution during the formation cycling (<8 mbar). In a 1 Ah multilayer pouch cell, 0.8 m NaFSI in TEP with 1 wt.% VC showed promising results with 88 % capacity retention after 200 cycles. X-ray photoelectron spectroscopy analysis indicated that the addition of VC results in the formation of a thin SEI and minimized TEP decomposition, particularly for 0.8 m NaFSI TEP with 1 wt.% VC. This study lays the groundwork for safer liquid electrolytes and integrating them into near-to-commercial cell setups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信