基于自由分量分析的可持续能源系统的盲源分离

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shuyan Ma, Xing He, Yechen Han, Qian Ai, Robert Qiu
{"title":"基于自由分量分析的可持续能源系统的盲源分离","authors":"Shuyan Ma,&nbsp;Xing He,&nbsp;Yechen Han,&nbsp;Qian Ai,&nbsp;Robert Qiu","doi":"10.1049/gtd2.70035","DOIUrl":null,"url":null,"abstract":"<p>Blind source separation is crucial for improving situational awareness in modern energy systems, particularly a sustainable one with extensive integration of distributed energy resources (DERs). DER power-usage patterns, shaped by climate and social factors, exhibit significant interdependence. This poses challenges for traditional methods such as independent component analysis, which rely on assumptions of independence. In this context, our work proposes a free component analysis (FCA) framework. FCA, rooted in free probability and random matrix theory, employs (free) non-commutative matrix variables, departing from traditional (independent) scalar variables. This approach effectively captures spatial-temporal correlations, offering deeper insights into DER cluster behaviours and further informing decision-making within sustainable energy systems featuring coupled DERs. Case studies using both simulated data and field data validate the effectiveness of the proposed framework.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70035","citationCount":"0","resultStr":"{\"title\":\"Blind Source Separation in Sustainable Energy Systems Using Free Component Analysis Considering Power-usage Interdependence\",\"authors\":\"Shuyan Ma,&nbsp;Xing He,&nbsp;Yechen Han,&nbsp;Qian Ai,&nbsp;Robert Qiu\",\"doi\":\"10.1049/gtd2.70035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Blind source separation is crucial for improving situational awareness in modern energy systems, particularly a sustainable one with extensive integration of distributed energy resources (DERs). DER power-usage patterns, shaped by climate and social factors, exhibit significant interdependence. This poses challenges for traditional methods such as independent component analysis, which rely on assumptions of independence. In this context, our work proposes a free component analysis (FCA) framework. FCA, rooted in free probability and random matrix theory, employs (free) non-commutative matrix variables, departing from traditional (independent) scalar variables. This approach effectively captures spatial-temporal correlations, offering deeper insights into DER cluster behaviours and further informing decision-making within sustainable energy systems featuring coupled DERs. Case studies using both simulated data and field data validate the effectiveness of the proposed framework.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70035\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70035","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在现代能源系统中,特别是在分布式能源广泛集成的可持续能源系统中,盲源分离对于提高态势感知能力至关重要。受气候和社会因素影响的分布式能源使用模式表现出显著的相互依赖性。这对依赖独立性假设的独立成分分析等传统方法提出了挑战。在此背景下,我们的工作提出了一个自由成分分析(FCA)框架。FCA植根于自由概率和随机矩阵理论,采用(自由)非交换矩阵变量,而不是传统的(独立的)标量变量。这种方法有效地捕获了时空相关性,为DER集群行为提供了更深入的见解,并进一步为具有耦合DER的可持续能源系统中的决策提供了信息。使用模拟数据和现场数据的案例研究验证了所提出框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Blind Source Separation in Sustainable Energy Systems Using Free Component Analysis Considering Power-usage Interdependence

Blind Source Separation in Sustainable Energy Systems Using Free Component Analysis Considering Power-usage Interdependence

Blind source separation is crucial for improving situational awareness in modern energy systems, particularly a sustainable one with extensive integration of distributed energy resources (DERs). DER power-usage patterns, shaped by climate and social factors, exhibit significant interdependence. This poses challenges for traditional methods such as independent component analysis, which rely on assumptions of independence. In this context, our work proposes a free component analysis (FCA) framework. FCA, rooted in free probability and random matrix theory, employs (free) non-commutative matrix variables, departing from traditional (independent) scalar variables. This approach effectively captures spatial-temporal correlations, offering deeper insights into DER cluster behaviours and further informing decision-making within sustainable energy systems featuring coupled DERs. Case studies using both simulated data and field data validate the effectiveness of the proposed framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信