利用机器学习预测霍尔效应离子源的性能

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Jaehong Park, Guentae Doh, Dongho Lee, Youngho Kim, Changmin Shin, Su-Jin Shin, Young-Chul Ghim, Sanghoo Park, Wonho Choe
{"title":"利用机器学习预测霍尔效应离子源的性能","authors":"Jaehong Park,&nbsp;Guentae Doh,&nbsp;Dongho Lee,&nbsp;Youngho Kim,&nbsp;Changmin Shin,&nbsp;Su-Jin Shin,&nbsp;Young-Chul Ghim,&nbsp;Sanghoo Park,&nbsp;Wonho Choe","doi":"10.1002/aisy.202570011","DOIUrl":null,"url":null,"abstract":"<p><b>Hall Effect Ion Source</b>\n </p><p>In article number 2400555, Wonho Choe and co-workers introduce a machine learning-based approach to accurately predicting the performance of Hall thrusters, a critical technology for space propulsion and industrial ion beam sources. By utilizing an ensemble of neural networks trained on 18,000 simulation datasets validated by experiments, the model achieves high accuracy in thrust and discharge current predictions, enabling the rapid development of optimized, high-efficiency thrusters with shorter design cycles.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202570011","citationCount":"0","resultStr":"{\"title\":\"Predicting Performance of Hall Effect Ion Source Using Machine Learning\",\"authors\":\"Jaehong Park,&nbsp;Guentae Doh,&nbsp;Dongho Lee,&nbsp;Youngho Kim,&nbsp;Changmin Shin,&nbsp;Su-Jin Shin,&nbsp;Young-Chul Ghim,&nbsp;Sanghoo Park,&nbsp;Wonho Choe\",\"doi\":\"10.1002/aisy.202570011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Hall Effect Ion Source</b>\\n </p><p>In article number 2400555, Wonho Choe and co-workers introduce a machine learning-based approach to accurately predicting the performance of Hall thrusters, a critical technology for space propulsion and industrial ion beam sources. By utilizing an ensemble of neural networks trained on 18,000 simulation datasets validated by experiments, the model achieves high accuracy in thrust and discharge current predictions, enabling the rapid development of optimized, high-efficiency thrusters with shorter design cycles.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202570011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202570011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202570011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在第2400555号文章中,Wonho Choe及其同事介绍了一种基于机器学习的方法来准确预测霍尔推进器的性能,霍尔推进器是空间推进和工业离子束源的关键技术。该模型利用18000个经过实验验证的仿真数据集训练的神经网络集合,在推力和放电电流预测方面实现了高精度,从而能够以更短的设计周期快速开发出优化的高效推进器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting Performance of Hall Effect Ion Source Using Machine Learning

Predicting Performance of Hall Effect Ion Source Using Machine Learning

Hall Effect Ion Source

In article number 2400555, Wonho Choe and co-workers introduce a machine learning-based approach to accurately predicting the performance of Hall thrusters, a critical technology for space propulsion and industrial ion beam sources. By utilizing an ensemble of neural networks trained on 18,000 simulation datasets validated by experiments, the model achieves high accuracy in thrust and discharge current predictions, enabling the rapid development of optimized, high-efficiency thrusters with shorter design cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信