Yahongyang Lydia Li, Ismail M. Khater, Christian Hallgrimson, Ben Cardoen, Timothy H. Wong, Ghassan Hamarneh, Ivan R. Nabi
{"title":"SuperResNET:无模型单分子网络分析软件实现Nup96的分子分辨率","authors":"Yahongyang Lydia Li, Ismail M. Khater, Christian Hallgrimson, Ben Cardoen, Timothy H. Wong, Ghassan Hamarneh, Ivan R. Nabi","doi":"10.1002/aisy.202570014","DOIUrl":null,"url":null,"abstract":"<p><b>SuperResNET Software</b>\n </p><p>SuperResNET machine learning analysis software visualizes and quantifies single molecule localization microscopy (SMLM) point cloud data. SuperResNET segments nucleopore octagon structures, its eight corners and identifies two modules in corners, corresponding to two individual Nup96 molecules. More details can be found in article number 2400521 by Ismail M. Khater, Ghassan Hamarneh, Ivan R. Nabi, and co-workers.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202570014","citationCount":"0","resultStr":"{\"title\":\"SuperResNET: Model-Free Single-Molecule Network Analysis Software Achieves Molecular Resolution of Nup96\",\"authors\":\"Yahongyang Lydia Li, Ismail M. Khater, Christian Hallgrimson, Ben Cardoen, Timothy H. Wong, Ghassan Hamarneh, Ivan R. Nabi\",\"doi\":\"10.1002/aisy.202570014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>SuperResNET Software</b>\\n </p><p>SuperResNET machine learning analysis software visualizes and quantifies single molecule localization microscopy (SMLM) point cloud data. SuperResNET segments nucleopore octagon structures, its eight corners and identifies two modules in corners, corresponding to two individual Nup96 molecules. More details can be found in article number 2400521 by Ismail M. Khater, Ghassan Hamarneh, Ivan R. Nabi, and co-workers.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202570014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202570014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202570014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
SuperResNET机器学习分析软件可视化和量化单分子定位显微镜(SMLM)点云数据。SuperResNET片段核孔八角形结构,其八个角和识别角中的两个模块,对应两个独立的Nup96分子。更多细节可以在Ismail M. Khater, Ghassan Hamarneh, Ivan R. Nabi及其同事的文章2400521中找到。
SuperResNET machine learning analysis software visualizes and quantifies single molecule localization microscopy (SMLM) point cloud data. SuperResNET segments nucleopore octagon structures, its eight corners and identifies two modules in corners, corresponding to two individual Nup96 molecules. More details can be found in article number 2400521 by Ismail M. Khater, Ghassan Hamarneh, Ivan R. Nabi, and co-workers.