Aino Korrensalo, Juho Kettunen, Lauri Mehtätalo, Jarno Vanhatalo, Eeva-Stiina Tuittila
{"title":"检测北方泥炭地物种和性状组成的微妙变化并量化其不确定性","authors":"Aino Korrensalo, Juho Kettunen, Lauri Mehtätalo, Jarno Vanhatalo, Eeva-Stiina Tuittila","doi":"10.1111/jvs.70025","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Climate change-induced changes in vegetation may be at first subtle and occur only locally within the ecosystem, complicating their reliable detection. We aimed to quantify short-term changes in species and trait composition in a moss-dominated ecosystem and to examine the associated uncertainty at the local and study area scales.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Pristine boreal fen (Siikaneva) in Central Finland.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We applied the recently developed pre-emptive joint species distribution model (<i>pJSDM</i>) to quantify the change in plant species and functional trait composition over 12 years. <i>pJSDM</i> allows spatially continuous prediction of change and the associated uncertainty from pointwise observations to the whole ecosystem. It includes the pre-emptive competition for space within mosses that are an important component in many high-latitude ecosystems. To address the mechanisms shaping the plant community, <i>pJSDM</i> was extended to predict the change in trait distribution parameters.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Within the studied peatland, we detected changes in species and trait composition that were small in magnitude but occurred with high probability. Some of the changes occurred only locally, others over the whole study area, and some of the local changes occurred in opposing directions. The species originally found in the drier locations increased in abundance. Also, an increase in <i>Sphagnum</i> capitulum size was detected, indicating adaptation to drier conditions. The cover of wet-adapted species decreased at the study area scale but displayed local increases.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The studied peatland showed nonuniform change in species and trait composition. The observed short-term changes are in line with earlier descriptions of multidecadal drying and ombrotrophication of peatland vegetation and suggest increasing contrasts within the vegetation. The applied approach, <i>pJSDM</i> paired with trait distribution parameters, showed potential in revealing ongoing subtle changes in moss-dominated vegetation.</p>\n </section>\n </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Subtle Change in Species and Trait Composition and Quantifying Its Uncertainty in a Boreal Peatland\",\"authors\":\"Aino Korrensalo, Juho Kettunen, Lauri Mehtätalo, Jarno Vanhatalo, Eeva-Stiina Tuittila\",\"doi\":\"10.1111/jvs.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aims</h3>\\n \\n <p>Climate change-induced changes in vegetation may be at first subtle and occur only locally within the ecosystem, complicating their reliable detection. We aimed to quantify short-term changes in species and trait composition in a moss-dominated ecosystem and to examine the associated uncertainty at the local and study area scales.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Pristine boreal fen (Siikaneva) in Central Finland.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We applied the recently developed pre-emptive joint species distribution model (<i>pJSDM</i>) to quantify the change in plant species and functional trait composition over 12 years. <i>pJSDM</i> allows spatially continuous prediction of change and the associated uncertainty from pointwise observations to the whole ecosystem. It includes the pre-emptive competition for space within mosses that are an important component in many high-latitude ecosystems. To address the mechanisms shaping the plant community, <i>pJSDM</i> was extended to predict the change in trait distribution parameters.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Within the studied peatland, we detected changes in species and trait composition that were small in magnitude but occurred with high probability. Some of the changes occurred only locally, others over the whole study area, and some of the local changes occurred in opposing directions. The species originally found in the drier locations increased in abundance. Also, an increase in <i>Sphagnum</i> capitulum size was detected, indicating adaptation to drier conditions. The cover of wet-adapted species decreased at the study area scale but displayed local increases.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The studied peatland showed nonuniform change in species and trait composition. The observed short-term changes are in line with earlier descriptions of multidecadal drying and ombrotrophication of peatland vegetation and suggest increasing contrasts within the vegetation. The applied approach, <i>pJSDM</i> paired with trait distribution parameters, showed potential in revealing ongoing subtle changes in moss-dominated vegetation.</p>\\n </section>\\n </div>\",\"PeriodicalId\":49965,\"journal\":{\"name\":\"Journal of Vegetation Science\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vegetation Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jvs.70025\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvs.70025","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Detecting Subtle Change in Species and Trait Composition and Quantifying Its Uncertainty in a Boreal Peatland
Aims
Climate change-induced changes in vegetation may be at first subtle and occur only locally within the ecosystem, complicating their reliable detection. We aimed to quantify short-term changes in species and trait composition in a moss-dominated ecosystem and to examine the associated uncertainty at the local and study area scales.
Location
Pristine boreal fen (Siikaneva) in Central Finland.
Methods
We applied the recently developed pre-emptive joint species distribution model (pJSDM) to quantify the change in plant species and functional trait composition over 12 years. pJSDM allows spatially continuous prediction of change and the associated uncertainty from pointwise observations to the whole ecosystem. It includes the pre-emptive competition for space within mosses that are an important component in many high-latitude ecosystems. To address the mechanisms shaping the plant community, pJSDM was extended to predict the change in trait distribution parameters.
Results
Within the studied peatland, we detected changes in species and trait composition that were small in magnitude but occurred with high probability. Some of the changes occurred only locally, others over the whole study area, and some of the local changes occurred in opposing directions. The species originally found in the drier locations increased in abundance. Also, an increase in Sphagnum capitulum size was detected, indicating adaptation to drier conditions. The cover of wet-adapted species decreased at the study area scale but displayed local increases.
Conclusions
The studied peatland showed nonuniform change in species and trait composition. The observed short-term changes are in line with earlier descriptions of multidecadal drying and ombrotrophication of peatland vegetation and suggest increasing contrasts within the vegetation. The applied approach, pJSDM paired with trait distribution parameters, showed potential in revealing ongoing subtle changes in moss-dominated vegetation.
期刊介绍:
The Journal of Vegetation Science publishes papers on all aspects of plant community ecology, with particular emphasis on papers that develop new concepts or methods, test theory, identify general patterns, or that are otherwise likely to interest a broad international readership. Papers may focus on any aspect of vegetation science, e.g. community structure (including community assembly and plant functional types), biodiversity (including species richness and composition), spatial patterns (including plant geography and landscape ecology), temporal changes (including demography, community dynamics and palaeoecology) and processes (including ecophysiology), provided the focus is on increasing our understanding of plant communities. The Journal publishes papers on the ecology of a single species only if it plays a key role in structuring plant communities. Papers that apply ecological concepts, theories and methods to the vegetation management, conservation and restoration, and papers on vegetation survey should be directed to our associate journal, Applied Vegetation Science journal.