用于脑肿瘤诊断的混合迁移学习框架

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Sadia Islam Tonni, Md. Alif Sheakh, Mst. Sazia Tahosin, Md. Zahid Hasan, Taslima Ferdaus Shuva, Touhid Bhuiyan, Muhammad Ali Abdullah Almoyad, Nabil Anan Orka, Md. Tanvir Rahman, Risala Tasin Khan, M. Shamim Kaiser, Mohammad Ali Moni
{"title":"用于脑肿瘤诊断的混合迁移学习框架","authors":"Sadia Islam Tonni,&nbsp;Md. Alif Sheakh,&nbsp;Mst. Sazia Tahosin,&nbsp;Md. Zahid Hasan,&nbsp;Taslima Ferdaus Shuva,&nbsp;Touhid Bhuiyan,&nbsp;Muhammad Ali Abdullah Almoyad,&nbsp;Nabil Anan Orka,&nbsp;Md. Tanvir Rahman,&nbsp;Risala Tasin Khan,&nbsp;M. Shamim Kaiser,&nbsp;Mohammad Ali Moni","doi":"10.1002/aisy.202400495","DOIUrl":null,"url":null,"abstract":"<p>Brain tumors are among the most severe health challenges, necessitating early and precise diagnosis for effective treatment planning. This study introduces an optimized hybrid transfer learning (TL) framework for brain tumor classification using magnetic resonance imaging images. The proposed system integrates advanced preprocessing techniques, an ensemble of pretrained deep learning models, and explainable artificial intelligence (XAI) methods to achieve high accuracy and reliability. The methodology enhances image quality through noise reduction and contrast enhancement, facilitating robust feature extraction. The ensemble model combines VGG16 and ResNet152V2 architectures, achieving a classification accuracy of 99.47% on a challenging four-class dataset. Additionally, gradient-weighted class activation mapping and SHapley Additive exPlanations (SHAP)-based XAI techniques provide visual and quantitative insights into model predictions, improving interpretability and clinical trust. This comprehensive framework demonstrates the potential of hybrid TL and XAI in advancing diagnostic accuracy and supporting clinical decision-making for brain tumor detection. The results underscore its applicability in clinical settings, particularly in resource-constrained environments.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400495","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Transfer Learning Framework for Brain Tumor Diagnosis\",\"authors\":\"Sadia Islam Tonni,&nbsp;Md. Alif Sheakh,&nbsp;Mst. Sazia Tahosin,&nbsp;Md. Zahid Hasan,&nbsp;Taslima Ferdaus Shuva,&nbsp;Touhid Bhuiyan,&nbsp;Muhammad Ali Abdullah Almoyad,&nbsp;Nabil Anan Orka,&nbsp;Md. Tanvir Rahman,&nbsp;Risala Tasin Khan,&nbsp;M. Shamim Kaiser,&nbsp;Mohammad Ali Moni\",\"doi\":\"10.1002/aisy.202400495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Brain tumors are among the most severe health challenges, necessitating early and precise diagnosis for effective treatment planning. This study introduces an optimized hybrid transfer learning (TL) framework for brain tumor classification using magnetic resonance imaging images. The proposed system integrates advanced preprocessing techniques, an ensemble of pretrained deep learning models, and explainable artificial intelligence (XAI) methods to achieve high accuracy and reliability. The methodology enhances image quality through noise reduction and contrast enhancement, facilitating robust feature extraction. The ensemble model combines VGG16 and ResNet152V2 architectures, achieving a classification accuracy of 99.47% on a challenging four-class dataset. Additionally, gradient-weighted class activation mapping and SHapley Additive exPlanations (SHAP)-based XAI techniques provide visual and quantitative insights into model predictions, improving interpretability and clinical trust. This comprehensive framework demonstrates the potential of hybrid TL and XAI in advancing diagnostic accuracy and supporting clinical decision-making for brain tumor detection. The results underscore its applicability in clinical settings, particularly in resource-constrained environments.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400495\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Hybrid Transfer Learning Framework for Brain Tumor Diagnosis

A Hybrid Transfer Learning Framework for Brain Tumor Diagnosis

Brain tumors are among the most severe health challenges, necessitating early and precise diagnosis for effective treatment planning. This study introduces an optimized hybrid transfer learning (TL) framework for brain tumor classification using magnetic resonance imaging images. The proposed system integrates advanced preprocessing techniques, an ensemble of pretrained deep learning models, and explainable artificial intelligence (XAI) methods to achieve high accuracy and reliability. The methodology enhances image quality through noise reduction and contrast enhancement, facilitating robust feature extraction. The ensemble model combines VGG16 and ResNet152V2 architectures, achieving a classification accuracy of 99.47% on a challenging four-class dataset. Additionally, gradient-weighted class activation mapping and SHapley Additive exPlanations (SHAP)-based XAI techniques provide visual and quantitative insights into model predictions, improving interpretability and clinical trust. This comprehensive framework demonstrates the potential of hybrid TL and XAI in advancing diagnostic accuracy and supporting clinical decision-making for brain tumor detection. The results underscore its applicability in clinical settings, particularly in resource-constrained environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信