硼酸锂/硼酸优化多功能粘合剂促进硅阳极具有增强的初始库仑效率,结构强度和循环稳定性

Battery Energy Pub Date : 2025-02-20 DOI:10.1002/bte2.70003
Xiang Wang, Tingting Li, Naiwen Liang, Xiaofan Liu, Fan Zhang, Yangfan Li, Yating Yang, Yujie Yang, Wenqing Ma, Zhongchang Wang, Jiang Yin, Yahui Yang, Lishan Yang
{"title":"硼酸锂/硼酸优化多功能粘合剂促进硅阳极具有增强的初始库仑效率,结构强度和循环稳定性","authors":"Xiang Wang,&nbsp;Tingting Li,&nbsp;Naiwen Liang,&nbsp;Xiaofan Liu,&nbsp;Fan Zhang,&nbsp;Yangfan Li,&nbsp;Yating Yang,&nbsp;Yujie Yang,&nbsp;Wenqing Ma,&nbsp;Zhongchang Wang,&nbsp;Jiang Yin,&nbsp;Yahui Yang,&nbsp;Lishan Yang","doi":"10.1002/bte2.70003","DOIUrl":null,"url":null,"abstract":"<p>Silicon-based anodes are among the most appealing possibilities for high-capacity anode materials, considering that they possess a high theoretical capacity. However, the significant volumetric changes during cycling lead to rapid capacity degradation, hindering their commercial application in high-energy density lithium-ion batteries (LIBs). This research introduces a novel organic-inorganic cross-linked binder system: sodium alginate-lithium borate-boric acid (Alg-LBO-BA). This three-dimensional network structure effectively buffers the volumetric changes of Si particles, maintaining overall electrode stability. LBO serves as prelithiation agent, compensating for irreversible lithium consumption during SEI formation, and the Si−O−B structure offers a plethora of Lewis acid sites, enhancing lithium-ion transport and interfacial stability. At a current activation of 0.2 A g<sup>−1</sup>, the optimized silicon anode shows an initial coulombic efficiency (ICE) of 91%. After 200 cycles at 1 A g<sup>−1</sup>, it retains a reversible capacity of 1631.8 mAh g<sup>−1</sup> and achieves 1768.0 mAh g<sup>−1</sup> at a high current density of 5 A g<sup>−1</sup>. This study presents a novel approach to designing organic-inorganic binders for silicon anodes, significantly advancing the development of high-performance silicon anodes.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70003","citationCount":"0","resultStr":"{\"title\":\"Lithium Borate/Boric Acid Optimized Multifunctional Binder Facilitates Silicon Anodes With Enhanced Initial Coulombic Efficiency, Structural Strength, and Cycling Stability\",\"authors\":\"Xiang Wang,&nbsp;Tingting Li,&nbsp;Naiwen Liang,&nbsp;Xiaofan Liu,&nbsp;Fan Zhang,&nbsp;Yangfan Li,&nbsp;Yating Yang,&nbsp;Yujie Yang,&nbsp;Wenqing Ma,&nbsp;Zhongchang Wang,&nbsp;Jiang Yin,&nbsp;Yahui Yang,&nbsp;Lishan Yang\",\"doi\":\"10.1002/bte2.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon-based anodes are among the most appealing possibilities for high-capacity anode materials, considering that they possess a high theoretical capacity. However, the significant volumetric changes during cycling lead to rapid capacity degradation, hindering their commercial application in high-energy density lithium-ion batteries (LIBs). This research introduces a novel organic-inorganic cross-linked binder system: sodium alginate-lithium borate-boric acid (Alg-LBO-BA). This three-dimensional network structure effectively buffers the volumetric changes of Si particles, maintaining overall electrode stability. LBO serves as prelithiation agent, compensating for irreversible lithium consumption during SEI formation, and the Si−O−B structure offers a plethora of Lewis acid sites, enhancing lithium-ion transport and interfacial stability. At a current activation of 0.2 A g<sup>−1</sup>, the optimized silicon anode shows an initial coulombic efficiency (ICE) of 91%. After 200 cycles at 1 A g<sup>−1</sup>, it retains a reversible capacity of 1631.8 mAh g<sup>−1</sup> and achieves 1768.0 mAh g<sup>−1</sup> at a high current density of 5 A g<sup>−1</sup>. This study presents a novel approach to designing organic-inorganic binders for silicon anodes, significantly advancing the development of high-performance silicon anodes.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.70003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硅基阳极是高容量阳极材料中最有吸引力的可能性之一,因为它们具有很高的理论容量。然而,循环过程中显著的体积变化导致容量快速退化,阻碍了它们在高能量密度锂离子电池(lib)中的商业应用。介绍了一种新型的有机-无机交联粘结剂体系:海藻酸钠-硼酸锂(Alg-LBO-BA)。这种三维网络结构有效地缓冲了Si颗粒的体积变化,保持了电极的整体稳定性。LBO作为预锂化剂,补偿了SEI形成过程中不可逆的锂消耗,并且Si - O - B结构提供了大量的Lewis酸位点,增强了锂离子的传输和界面稳定性。在0.2 a g−1的激活电流下,优化后的硅阳极的初始库仑效率(ICE)为91%。在1 A g−1电流下,经过200次循环后,它保持了1631.8 mAh g−1的可逆容量,在5 A g−1的高电流密度下达到了1768.0 mAh g−1。本研究提出了一种设计硅阳极有机-无机结合剂的新方法,对高性能硅阳极的发展具有重要的推动作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lithium Borate/Boric Acid Optimized Multifunctional Binder Facilitates Silicon Anodes With Enhanced Initial Coulombic Efficiency, Structural Strength, and Cycling Stability

Lithium Borate/Boric Acid Optimized Multifunctional Binder Facilitates Silicon Anodes With Enhanced Initial Coulombic Efficiency, Structural Strength, and Cycling Stability

Silicon-based anodes are among the most appealing possibilities for high-capacity anode materials, considering that they possess a high theoretical capacity. However, the significant volumetric changes during cycling lead to rapid capacity degradation, hindering their commercial application in high-energy density lithium-ion batteries (LIBs). This research introduces a novel organic-inorganic cross-linked binder system: sodium alginate-lithium borate-boric acid (Alg-LBO-BA). This three-dimensional network structure effectively buffers the volumetric changes of Si particles, maintaining overall electrode stability. LBO serves as prelithiation agent, compensating for irreversible lithium consumption during SEI formation, and the Si−O−B structure offers a plethora of Lewis acid sites, enhancing lithium-ion transport and interfacial stability. At a current activation of 0.2 A g−1, the optimized silicon anode shows an initial coulombic efficiency (ICE) of 91%. After 200 cycles at 1 A g−1, it retains a reversible capacity of 1631.8 mAh g−1 and achieves 1768.0 mAh g−1 at a high current density of 5 A g−1. This study presents a novel approach to designing organic-inorganic binders for silicon anodes, significantly advancing the development of high-performance silicon anodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信