{"title":"硼酸锂/硼酸优化多功能粘合剂促进硅阳极具有增强的初始库仑效率,结构强度和循环稳定性","authors":"Xiang Wang, Tingting Li, Naiwen Liang, Xiaofan Liu, Fan Zhang, Yangfan Li, Yating Yang, Yujie Yang, Wenqing Ma, Zhongchang Wang, Jiang Yin, Yahui Yang, Lishan Yang","doi":"10.1002/bte2.70003","DOIUrl":null,"url":null,"abstract":"<p>Silicon-based anodes are among the most appealing possibilities for high-capacity anode materials, considering that they possess a high theoretical capacity. However, the significant volumetric changes during cycling lead to rapid capacity degradation, hindering their commercial application in high-energy density lithium-ion batteries (LIBs). This research introduces a novel organic-inorganic cross-linked binder system: sodium alginate-lithium borate-boric acid (Alg-LBO-BA). This three-dimensional network structure effectively buffers the volumetric changes of Si particles, maintaining overall electrode stability. LBO serves as prelithiation agent, compensating for irreversible lithium consumption during SEI formation, and the Si−O−B structure offers a plethora of Lewis acid sites, enhancing lithium-ion transport and interfacial stability. At a current activation of 0.2 A g<sup>−1</sup>, the optimized silicon anode shows an initial coulombic efficiency (ICE) of 91%. After 200 cycles at 1 A g<sup>−1</sup>, it retains a reversible capacity of 1631.8 mAh g<sup>−1</sup> and achieves 1768.0 mAh g<sup>−1</sup> at a high current density of 5 A g<sup>−1</sup>. This study presents a novel approach to designing organic-inorganic binders for silicon anodes, significantly advancing the development of high-performance silicon anodes.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70003","citationCount":"0","resultStr":"{\"title\":\"Lithium Borate/Boric Acid Optimized Multifunctional Binder Facilitates Silicon Anodes With Enhanced Initial Coulombic Efficiency, Structural Strength, and Cycling Stability\",\"authors\":\"Xiang Wang, Tingting Li, Naiwen Liang, Xiaofan Liu, Fan Zhang, Yangfan Li, Yating Yang, Yujie Yang, Wenqing Ma, Zhongchang Wang, Jiang Yin, Yahui Yang, Lishan Yang\",\"doi\":\"10.1002/bte2.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon-based anodes are among the most appealing possibilities for high-capacity anode materials, considering that they possess a high theoretical capacity. However, the significant volumetric changes during cycling lead to rapid capacity degradation, hindering their commercial application in high-energy density lithium-ion batteries (LIBs). This research introduces a novel organic-inorganic cross-linked binder system: sodium alginate-lithium borate-boric acid (Alg-LBO-BA). This three-dimensional network structure effectively buffers the volumetric changes of Si particles, maintaining overall electrode stability. LBO serves as prelithiation agent, compensating for irreversible lithium consumption during SEI formation, and the Si−O−B structure offers a plethora of Lewis acid sites, enhancing lithium-ion transport and interfacial stability. At a current activation of 0.2 A g<sup>−1</sup>, the optimized silicon anode shows an initial coulombic efficiency (ICE) of 91%. After 200 cycles at 1 A g<sup>−1</sup>, it retains a reversible capacity of 1631.8 mAh g<sup>−1</sup> and achieves 1768.0 mAh g<sup>−1</sup> at a high current density of 5 A g<sup>−1</sup>. This study presents a novel approach to designing organic-inorganic binders for silicon anodes, significantly advancing the development of high-performance silicon anodes.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.70003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
硅基阳极是高容量阳极材料中最有吸引力的可能性之一,因为它们具有很高的理论容量。然而,循环过程中显著的体积变化导致容量快速退化,阻碍了它们在高能量密度锂离子电池(lib)中的商业应用。介绍了一种新型的有机-无机交联粘结剂体系:海藻酸钠-硼酸锂(Alg-LBO-BA)。这种三维网络结构有效地缓冲了Si颗粒的体积变化,保持了电极的整体稳定性。LBO作为预锂化剂,补偿了SEI形成过程中不可逆的锂消耗,并且Si - O - B结构提供了大量的Lewis酸位点,增强了锂离子的传输和界面稳定性。在0.2 a g−1的激活电流下,优化后的硅阳极的初始库仑效率(ICE)为91%。在1 A g−1电流下,经过200次循环后,它保持了1631.8 mAh g−1的可逆容量,在5 A g−1的高电流密度下达到了1768.0 mAh g−1。本研究提出了一种设计硅阳极有机-无机结合剂的新方法,对高性能硅阳极的发展具有重要的推动作用。
Lithium Borate/Boric Acid Optimized Multifunctional Binder Facilitates Silicon Anodes With Enhanced Initial Coulombic Efficiency, Structural Strength, and Cycling Stability
Silicon-based anodes are among the most appealing possibilities for high-capacity anode materials, considering that they possess a high theoretical capacity. However, the significant volumetric changes during cycling lead to rapid capacity degradation, hindering their commercial application in high-energy density lithium-ion batteries (LIBs). This research introduces a novel organic-inorganic cross-linked binder system: sodium alginate-lithium borate-boric acid (Alg-LBO-BA). This three-dimensional network structure effectively buffers the volumetric changes of Si particles, maintaining overall electrode stability. LBO serves as prelithiation agent, compensating for irreversible lithium consumption during SEI formation, and the Si−O−B structure offers a plethora of Lewis acid sites, enhancing lithium-ion transport and interfacial stability. At a current activation of 0.2 A g−1, the optimized silicon anode shows an initial coulombic efficiency (ICE) of 91%. After 200 cycles at 1 A g−1, it retains a reversible capacity of 1631.8 mAh g−1 and achieves 1768.0 mAh g−1 at a high current density of 5 A g−1. This study presents a novel approach to designing organic-inorganic binders for silicon anodes, significantly advancing the development of high-performance silicon anodes.