Arabinda Mishra, Feng Wang, Li Min Chen, John C. Gore
{"title":"基于机器学习的非人灵长类初级躯体感觉皮层内层级分辨 fMRI 激活和功能连接性聚类分析","authors":"Arabinda Mishra, Feng Wang, Li Min Chen, John C. Gore","doi":"10.1002/hbm.70193","DOIUrl":null,"url":null,"abstract":"<p>Delineating the functional organization of mesoscale cortical columnar structure is essential for understanding brain function. We have previously demonstrated a high spatial correspondence between BOLD fMRI and LFP responses to tactile stimuli in the primary somatosensory cortex area 3b of nonhuman primates. This study aims to explore how 2D spatial profiles of the functional column vary across cortical layers (defined by three cortical depths) in both tactile stimulation and resting states using fMRI. At 9.4 T, we acquired submillimeter-resolution oblique fMRI data from cortical areas 3b and 1 of anesthetized squirrel monkeys and obtained fMRI signals from three cortical layers. In both areas 3b and 1, the tactile stimulus-evoked fMRI activation foci were fitted with point spread functions (PSFs), from which shape parameters, including full width at half maximum (FWHM), were derived. Seed-based resting-state fMRI data analysis was then performed to measure the spatial profiles of resting-state connectivity within and between areas 3b and 1. We found that the tactile-evoked fMRI response and local resting-state functional connectivity were elongated at the superficial layer, with the major axes oriented in lateral to medial (from digit 1 to digit 5) direction. This elongation was significantly reduced in the deeper (middle and bottom) layers. To assess the robustness of these spatial profiles in distinguishing cortical layers, shape parameters describing the spatial extents of activation and resting-state connectivity profiles were used to classify the layers via self-organizing maps (SOM). A minimal overall classification error (~13%) was achieved, effectively classifying the layers into two groups: the superficial layer exhibited distinct features from the two deeper layers in the rsfMRI data. Our results support distinct 2D spatial profiles for superficial versus deeper cortical layers and reveal similarities between stimulus-evoked and resting-state configurations.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70193","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Clustering of Layer-Resolved fMRI Activation and Functional Connectivity Within the Primary Somatosensory Cortex in Nonhuman Primates\",\"authors\":\"Arabinda Mishra, Feng Wang, Li Min Chen, John C. Gore\",\"doi\":\"10.1002/hbm.70193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Delineating the functional organization of mesoscale cortical columnar structure is essential for understanding brain function. We have previously demonstrated a high spatial correspondence between BOLD fMRI and LFP responses to tactile stimuli in the primary somatosensory cortex area 3b of nonhuman primates. This study aims to explore how 2D spatial profiles of the functional column vary across cortical layers (defined by three cortical depths) in both tactile stimulation and resting states using fMRI. At 9.4 T, we acquired submillimeter-resolution oblique fMRI data from cortical areas 3b and 1 of anesthetized squirrel monkeys and obtained fMRI signals from three cortical layers. In both areas 3b and 1, the tactile stimulus-evoked fMRI activation foci were fitted with point spread functions (PSFs), from which shape parameters, including full width at half maximum (FWHM), were derived. Seed-based resting-state fMRI data analysis was then performed to measure the spatial profiles of resting-state connectivity within and between areas 3b and 1. We found that the tactile-evoked fMRI response and local resting-state functional connectivity were elongated at the superficial layer, with the major axes oriented in lateral to medial (from digit 1 to digit 5) direction. This elongation was significantly reduced in the deeper (middle and bottom) layers. To assess the robustness of these spatial profiles in distinguishing cortical layers, shape parameters describing the spatial extents of activation and resting-state connectivity profiles were used to classify the layers via self-organizing maps (SOM). A minimal overall classification error (~13%) was achieved, effectively classifying the layers into two groups: the superficial layer exhibited distinct features from the two deeper layers in the rsfMRI data. Our results support distinct 2D spatial profiles for superficial versus deeper cortical layers and reveal similarities between stimulus-evoked and resting-state configurations.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70193\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70193\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70193","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Machine Learning-Based Clustering of Layer-Resolved fMRI Activation and Functional Connectivity Within the Primary Somatosensory Cortex in Nonhuman Primates
Delineating the functional organization of mesoscale cortical columnar structure is essential for understanding brain function. We have previously demonstrated a high spatial correspondence between BOLD fMRI and LFP responses to tactile stimuli in the primary somatosensory cortex area 3b of nonhuman primates. This study aims to explore how 2D spatial profiles of the functional column vary across cortical layers (defined by three cortical depths) in both tactile stimulation and resting states using fMRI. At 9.4 T, we acquired submillimeter-resolution oblique fMRI data from cortical areas 3b and 1 of anesthetized squirrel monkeys and obtained fMRI signals from three cortical layers. In both areas 3b and 1, the tactile stimulus-evoked fMRI activation foci were fitted with point spread functions (PSFs), from which shape parameters, including full width at half maximum (FWHM), were derived. Seed-based resting-state fMRI data analysis was then performed to measure the spatial profiles of resting-state connectivity within and between areas 3b and 1. We found that the tactile-evoked fMRI response and local resting-state functional connectivity were elongated at the superficial layer, with the major axes oriented in lateral to medial (from digit 1 to digit 5) direction. This elongation was significantly reduced in the deeper (middle and bottom) layers. To assess the robustness of these spatial profiles in distinguishing cortical layers, shape parameters describing the spatial extents of activation and resting-state connectivity profiles were used to classify the layers via self-organizing maps (SOM). A minimal overall classification error (~13%) was achieved, effectively classifying the layers into two groups: the superficial layer exhibited distinct features from the two deeper layers in the rsfMRI data. Our results support distinct 2D spatial profiles for superficial versus deeper cortical layers and reveal similarities between stimulus-evoked and resting-state configurations.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.