孤儿GPR50通过激活神经祖细胞和伸长细胞中的G12/13蛋白- rhoa通路抑制神经突生长和细胞迁移

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Raise Ahmad, Marine Luka, Anne-Sophie Journe, Sarah Gallet, Alan Hegron, Marcio Do Cruzeiro, Mark J. Millan, Philippe Delagrange, Bernard Masri, Julie Dam, Vincent Prevot, Ralf Jockers
{"title":"孤儿GPR50通过激活神经祖细胞和伸长细胞中的G12/13蛋白- rhoa通路抑制神经突生长和细胞迁移","authors":"Raise Ahmad,&nbsp;Marine Luka,&nbsp;Anne-Sophie Journe,&nbsp;Sarah Gallet,&nbsp;Alan Hegron,&nbsp;Marcio Do Cruzeiro,&nbsp;Mark J. Millan,&nbsp;Philippe Delagrange,&nbsp;Bernard Masri,&nbsp;Julie Dam,&nbsp;Vincent Prevot,&nbsp;Ralf Jockers","doi":"10.1111/jpi.70041","DOIUrl":null,"url":null,"abstract":"<p>Human genetic variants of the orphan G protein-coupled receptor GPR50 are suggested risk factors for neuropsychiatric disorders. However, the function of GPR50 in the central nervous system (CNS) and its link to CNS disorders remain poorly defined. Here, we generated GPR50 knockout (GPR50-KO) mice and show that the absence of GPR50 increases neurite outgrowth, cell motility and migration of isolated neural progenitor cells (NPCs) and hypothalamic radial glial cells (tanycytes). These observations were phenocopied in NPCs and tanycytes from wild-type mice treated with neutralizing antibodies the against the prototypical neurite growth inhibitor Nogo-A. Treatment of NPCs and tanycytes from GPR50-KO cells with neutralizing antibodies had no further, additive, effect. Inhibition of neurite growth by GPR50 occurs through activation of the G<sub>12/13</sub> protein-RhoA pathway in a manner similar to, but independent of Nogo-A and its receptors. Collectively, we show that GPR50 acts as an inhibitor of neurite growth and cell migration in the brain by activating the G<sub>12/13</sub> protein-RhoA pathway.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 2","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.70041","citationCount":"0","resultStr":"{\"title\":\"Orphan GPR50 Restrains Neurite Outgrowth and Cell Migration by Activating the G12/13 Protein-RhoA Pathway in Neural Progenitor Cells and Tanycytes\",\"authors\":\"Raise Ahmad,&nbsp;Marine Luka,&nbsp;Anne-Sophie Journe,&nbsp;Sarah Gallet,&nbsp;Alan Hegron,&nbsp;Marcio Do Cruzeiro,&nbsp;Mark J. Millan,&nbsp;Philippe Delagrange,&nbsp;Bernard Masri,&nbsp;Julie Dam,&nbsp;Vincent Prevot,&nbsp;Ralf Jockers\",\"doi\":\"10.1111/jpi.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human genetic variants of the orphan G protein-coupled receptor GPR50 are suggested risk factors for neuropsychiatric disorders. However, the function of GPR50 in the central nervous system (CNS) and its link to CNS disorders remain poorly defined. Here, we generated GPR50 knockout (GPR50-KO) mice and show that the absence of GPR50 increases neurite outgrowth, cell motility and migration of isolated neural progenitor cells (NPCs) and hypothalamic radial glial cells (tanycytes). These observations were phenocopied in NPCs and tanycytes from wild-type mice treated with neutralizing antibodies the against the prototypical neurite growth inhibitor Nogo-A. Treatment of NPCs and tanycytes from GPR50-KO cells with neutralizing antibodies had no further, additive, effect. Inhibition of neurite growth by GPR50 occurs through activation of the G<sub>12/13</sub> protein-RhoA pathway in a manner similar to, but independent of Nogo-A and its receptors. Collectively, we show that GPR50 acts as an inhibitor of neurite growth and cell migration in the brain by activating the G<sub>12/13</sub> protein-RhoA pathway.</p>\",\"PeriodicalId\":198,\"journal\":{\"name\":\"Journal of Pineal Research\",\"volume\":\"77 2\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.70041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pineal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70041\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70041","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

孤儿G蛋白偶联受体GPR50的人类遗传变异被认为是神经精神疾病的危险因素。然而,GPR50在中枢神经系统(CNS)中的功能及其与中枢神经系统疾病的联系仍不清楚。在这里,我们构建了GPR50敲除(GPR50- ko)小鼠,并发现GPR50缺失增加了分离的神经祖细胞(npc)和下丘脑放射状胶质细胞(伸长细胞)的神经突生长、细胞运动和迁移。这些观察结果在使用抗神经突生长抑制剂Nogo-A的中和抗体处理的野生型小鼠的npc和伸长细胞中得到了表型。用中和抗体处理GPR50-KO细胞的npc和伸长细胞没有进一步的附加效应。GPR50通过激活G12/13蛋白- rhoa通路来抑制神经突生长,其方式与Nogo-A及其受体相似,但独立于Nogo-A及其受体。总的来说,我们发现GPR50通过激活G12/13蛋白- rhoa通路来抑制大脑中的神经突生长和细胞迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Orphan GPR50 Restrains Neurite Outgrowth and Cell Migration by Activating the G12/13 Protein-RhoA Pathway in Neural Progenitor Cells and Tanycytes

Orphan GPR50 Restrains Neurite Outgrowth and Cell Migration by Activating the G12/13 Protein-RhoA Pathway in Neural Progenitor Cells and Tanycytes

Human genetic variants of the orphan G protein-coupled receptor GPR50 are suggested risk factors for neuropsychiatric disorders. However, the function of GPR50 in the central nervous system (CNS) and its link to CNS disorders remain poorly defined. Here, we generated GPR50 knockout (GPR50-KO) mice and show that the absence of GPR50 increases neurite outgrowth, cell motility and migration of isolated neural progenitor cells (NPCs) and hypothalamic radial glial cells (tanycytes). These observations were phenocopied in NPCs and tanycytes from wild-type mice treated with neutralizing antibodies the against the prototypical neurite growth inhibitor Nogo-A. Treatment of NPCs and tanycytes from GPR50-KO cells with neutralizing antibodies had no further, additive, effect. Inhibition of neurite growth by GPR50 occurs through activation of the G12/13 protein-RhoA pathway in a manner similar to, but independent of Nogo-A and its receptors. Collectively, we show that GPR50 acts as an inhibitor of neurite growth and cell migration in the brain by activating the G12/13 protein-RhoA pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信