Francesco Mosconi, Elisa Tinti, Emanuele Casarotti, Alice-Agnes Gabriel, Antonio Pio Rinaldi, Luca Dal Zilio, Massimo Cocco
{"title":"流体注入诱发微地震的三维动态破裂建模","authors":"Francesco Mosconi, Elisa Tinti, Emanuele Casarotti, Alice-Agnes Gabriel, Antonio Pio Rinaldi, Luca Dal Zilio, Massimo Cocco","doi":"10.1029/2024JB029621","DOIUrl":null,"url":null,"abstract":"<p>Understanding the dynamics of microearthquakes is a timely challenge with the potential to address current paradoxes in earthquake mechanics, and to better understand earthquake ruptures induced by fluid injection. We perform fully 3D dynamic rupture simulations caused by fluid injection on a target fault for Fault Activation and Earthquake Ruptures experiments generating <i>M</i><sub>w</sub> ≤ 1 earthquakes. We investigate the dynamics of rupture propagation with spatially variable stress drop caused by pore pressure changes and assuming different slip-weakening constitutive parameters. We show that the spontaneous arrest of propagating ruptures is possible by assuming a high fault strength parameter S, that is, a high ratio between strength excess and dynamic stress drop. In faults with high S values (low rupturing potential), even minor variations in <i>D</i><sub>c</sub> (from 0.45 to 0.6 mm) have a substantial effect on the rupture propagation and the ultimate earthquake size. Modest spatial variations of dynamic stress drop determine the rupture mode, distinguishing self-arresting from run-away ruptures. Our results suggest that several characteristics inferred for accelerating dynamic ruptures differ from those observed during rupture deceleration of a self-arresting earthquake. During deceleration, a decrease of peak slip velocity is associated with a nearly constant cohesive zone size. Moreover, the residual slip velocity value (asymptotic value for a crack-like rupture) decreases to nearly zero. This means that an initially crack-like rupture becomes a pulse-like rupture during spontaneous arrest. These findings highlight the complex dynamics of small induced earthquakes, which differ from solutions obtained from conventional crack-like models of earthquake rupture.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029621","citationCount":"0","resultStr":"{\"title\":\"Modeling the 3D Dynamic Rupture of Microearthquakes Induced by Fluid Injection\",\"authors\":\"Francesco Mosconi, Elisa Tinti, Emanuele Casarotti, Alice-Agnes Gabriel, Antonio Pio Rinaldi, Luca Dal Zilio, Massimo Cocco\",\"doi\":\"10.1029/2024JB029621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the dynamics of microearthquakes is a timely challenge with the potential to address current paradoxes in earthquake mechanics, and to better understand earthquake ruptures induced by fluid injection. We perform fully 3D dynamic rupture simulations caused by fluid injection on a target fault for Fault Activation and Earthquake Ruptures experiments generating <i>M</i><sub>w</sub> ≤ 1 earthquakes. We investigate the dynamics of rupture propagation with spatially variable stress drop caused by pore pressure changes and assuming different slip-weakening constitutive parameters. We show that the spontaneous arrest of propagating ruptures is possible by assuming a high fault strength parameter S, that is, a high ratio between strength excess and dynamic stress drop. In faults with high S values (low rupturing potential), even minor variations in <i>D</i><sub>c</sub> (from 0.45 to 0.6 mm) have a substantial effect on the rupture propagation and the ultimate earthquake size. Modest spatial variations of dynamic stress drop determine the rupture mode, distinguishing self-arresting from run-away ruptures. Our results suggest that several characteristics inferred for accelerating dynamic ruptures differ from those observed during rupture deceleration of a self-arresting earthquake. During deceleration, a decrease of peak slip velocity is associated with a nearly constant cohesive zone size. Moreover, the residual slip velocity value (asymptotic value for a crack-like rupture) decreases to nearly zero. This means that an initially crack-like rupture becomes a pulse-like rupture during spontaneous arrest. These findings highlight the complex dynamics of small induced earthquakes, which differ from solutions obtained from conventional crack-like models of earthquake rupture.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"130 3\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029621\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029621\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029621","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Modeling the 3D Dynamic Rupture of Microearthquakes Induced by Fluid Injection
Understanding the dynamics of microearthquakes is a timely challenge with the potential to address current paradoxes in earthquake mechanics, and to better understand earthquake ruptures induced by fluid injection. We perform fully 3D dynamic rupture simulations caused by fluid injection on a target fault for Fault Activation and Earthquake Ruptures experiments generating Mw ≤ 1 earthquakes. We investigate the dynamics of rupture propagation with spatially variable stress drop caused by pore pressure changes and assuming different slip-weakening constitutive parameters. We show that the spontaneous arrest of propagating ruptures is possible by assuming a high fault strength parameter S, that is, a high ratio between strength excess and dynamic stress drop. In faults with high S values (low rupturing potential), even minor variations in Dc (from 0.45 to 0.6 mm) have a substantial effect on the rupture propagation and the ultimate earthquake size. Modest spatial variations of dynamic stress drop determine the rupture mode, distinguishing self-arresting from run-away ruptures. Our results suggest that several characteristics inferred for accelerating dynamic ruptures differ from those observed during rupture deceleration of a self-arresting earthquake. During deceleration, a decrease of peak slip velocity is associated with a nearly constant cohesive zone size. Moreover, the residual slip velocity value (asymptotic value for a crack-like rupture) decreases to nearly zero. This means that an initially crack-like rupture becomes a pulse-like rupture during spontaneous arrest. These findings highlight the complex dynamics of small induced earthquakes, which differ from solutions obtained from conventional crack-like models of earthquake rupture.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.