基于深度卷积网络的磁共振脑肿瘤多分类概率选择方法

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rajat Mehrotra, M. A. Ansari, Rajeev Agrawal, Md Belal Bin Heyat, Pragati Tripathi, Eram Sayeed, Saba Parveen, John Irish G. Lira, Hadaate Ullah
{"title":"基于深度卷积网络的磁共振脑肿瘤多分类概率选择方法","authors":"Rajat Mehrotra,&nbsp;M. A. Ansari,&nbsp;Rajeev Agrawal,&nbsp;Md Belal Bin Heyat,&nbsp;Pragati Tripathi,&nbsp;Eram Sayeed,&nbsp;Saba Parveen,&nbsp;John Irish G. Lira,&nbsp;Hadaate Ullah","doi":"10.1155/int/6914757","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The human brain’s computer-assisted prognosis (CAP) system relies heavily on the self-regulating characterization of tumors. Despite being extensively researched, the classification of brain tumors into meningioma, glioma, and pituitary types using magnetic resonance (MR) images presents significant challenges. Although biopsies are currently the gold standard for evaluating tumors, the need for noninvasive and accurate methods to grade brain tumors is increasing due to the risks associated with invasive biopsies. The objective is to introduce a noninvasive brain tumor grading system based on MR imaging (MRI) and deep learning (DL) utilizing probabilistic selection techniques. In the proposed method, the best three of the seven state-of-the-art deep convolutional networks are chosen after extensive experimentation and combined with a probabilistic selection technique to enhance the overall performance of the proposed classification model. The results elucidate that the proposed model successfully classifies the tumor types into Glioma, Meningioma, and Pituitary achieving a sensitivity of 0.928, 0.939, and 0.992, respectively for each tumor type. Also, the precision in classifying the tumor classes is attained as 0.969, 0.932, and 0.957, respectively claiming an accuracy of 0.966, 0.956, and 0.983 for each of the three classes. The proposed model achieved an overall classification accuracy of 96.06%, surpassing the state-of-the-art advanced and sophisticated techniques. Extensive experiments were performed on brain MRI datasets to demonstrate the enhanced performance of the proposed approach. The suggested probabilistic selection technique yielded promising classification results for brain tumors and exhibited the potential to leverage the strengths of various models.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/6914757","citationCount":"0","resultStr":"{\"title\":\"Deep Convolutional Network-Based Probabilistic Selection Approach for Multiclassification of Brain Tumors Using Magnetic Resonance Imaging\",\"authors\":\"Rajat Mehrotra,&nbsp;M. A. Ansari,&nbsp;Rajeev Agrawal,&nbsp;Md Belal Bin Heyat,&nbsp;Pragati Tripathi,&nbsp;Eram Sayeed,&nbsp;Saba Parveen,&nbsp;John Irish G. Lira,&nbsp;Hadaate Ullah\",\"doi\":\"10.1155/int/6914757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The human brain’s computer-assisted prognosis (CAP) system relies heavily on the self-regulating characterization of tumors. Despite being extensively researched, the classification of brain tumors into meningioma, glioma, and pituitary types using magnetic resonance (MR) images presents significant challenges. Although biopsies are currently the gold standard for evaluating tumors, the need for noninvasive and accurate methods to grade brain tumors is increasing due to the risks associated with invasive biopsies. The objective is to introduce a noninvasive brain tumor grading system based on MR imaging (MRI) and deep learning (DL) utilizing probabilistic selection techniques. In the proposed method, the best three of the seven state-of-the-art deep convolutional networks are chosen after extensive experimentation and combined with a probabilistic selection technique to enhance the overall performance of the proposed classification model. The results elucidate that the proposed model successfully classifies the tumor types into Glioma, Meningioma, and Pituitary achieving a sensitivity of 0.928, 0.939, and 0.992, respectively for each tumor type. Also, the precision in classifying the tumor classes is attained as 0.969, 0.932, and 0.957, respectively claiming an accuracy of 0.966, 0.956, and 0.983 for each of the three classes. The proposed model achieved an overall classification accuracy of 96.06%, surpassing the state-of-the-art advanced and sophisticated techniques. Extensive experiments were performed on brain MRI datasets to demonstrate the enhanced performance of the proposed approach. The suggested probabilistic selection technique yielded promising classification results for brain tumors and exhibited the potential to leverage the strengths of various models.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/6914757\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/6914757\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/6914757","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

人脑的计算机辅助预后(CAP)系统在很大程度上依赖于肿瘤的自我调节特征。尽管已被广泛研究,但使用磁共振(MR)图像将脑肿瘤分为脑膜瘤、胶质瘤和垂体类型仍存在重大挑战。虽然活组织检查目前是评估肿瘤的金标准,但由于有创性活组织检查的风险,对非侵入性和准确的脑肿瘤分级方法的需求正在增加。目的是介绍一种基于磁共振成像(MRI)和利用概率选择技术的深度学习(DL)的无创脑肿瘤分级系统。在提出的方法中,经过广泛的实验,从七个最先进的深度卷积网络中选择最好的三个,并与概率选择技术相结合,以提高所提出的分类模型的整体性能。结果表明,该模型成功地将肿瘤类型划分为胶质瘤、脑膜瘤和垂体,每种肿瘤类型的敏感性分别为0.928、0.939和0.992。此外,对肿瘤分类的精度分别为0.969、0.932和0.957,分别为0.966、0.956和0.983。该模型总体分类准确率达到96.06%,超越了目前最先进、最复杂的技术。在脑MRI数据集上进行了大量的实验,以证明所提出的方法的增强性能。建议的概率选择技术对脑肿瘤产生了有希望的分类结果,并展示了利用各种模型优势的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep Convolutional Network-Based Probabilistic Selection Approach for Multiclassification of Brain Tumors Using Magnetic Resonance Imaging

Deep Convolutional Network-Based Probabilistic Selection Approach for Multiclassification of Brain Tumors Using Magnetic Resonance Imaging

The human brain’s computer-assisted prognosis (CAP) system relies heavily on the self-regulating characterization of tumors. Despite being extensively researched, the classification of brain tumors into meningioma, glioma, and pituitary types using magnetic resonance (MR) images presents significant challenges. Although biopsies are currently the gold standard for evaluating tumors, the need for noninvasive and accurate methods to grade brain tumors is increasing due to the risks associated with invasive biopsies. The objective is to introduce a noninvasive brain tumor grading system based on MR imaging (MRI) and deep learning (DL) utilizing probabilistic selection techniques. In the proposed method, the best three of the seven state-of-the-art deep convolutional networks are chosen after extensive experimentation and combined with a probabilistic selection technique to enhance the overall performance of the proposed classification model. The results elucidate that the proposed model successfully classifies the tumor types into Glioma, Meningioma, and Pituitary achieving a sensitivity of 0.928, 0.939, and 0.992, respectively for each tumor type. Also, the precision in classifying the tumor classes is attained as 0.969, 0.932, and 0.957, respectively claiming an accuracy of 0.966, 0.956, and 0.983 for each of the three classes. The proposed model achieved an overall classification accuracy of 96.06%, surpassing the state-of-the-art advanced and sophisticated techniques. Extensive experiments were performed on brain MRI datasets to demonstrate the enhanced performance of the proposed approach. The suggested probabilistic selection technique yielded promising classification results for brain tumors and exhibited the potential to leverage the strengths of various models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信