SEM, EDX, AFM和XPS分析了硅衬底上纳米光栅图案的表面微观结构和化学成分

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Nima E. Gorji, Agnieszka Pieniążek, Alexandru Iancu, Malgorzata Norek, Christophe Couteau, Regis Deturche, Avtandil Tavkhelidze, Amiran Bibilashvili, Larissa Jangidze
{"title":"SEM, EDX, AFM和XPS分析了硅衬底上纳米光栅图案的表面微观结构和化学成分","authors":"Nima E. Gorji,&nbsp;Agnieszka Pieniążek,&nbsp;Alexandru Iancu,&nbsp;Malgorzata Norek,&nbsp;Christophe Couteau,&nbsp;Regis Deturche,&nbsp;Avtandil Tavkhelidze,&nbsp;Amiran Bibilashvili,&nbsp;Larissa Jangidze","doi":"10.1007/s11082-025-08106-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study conducted a comprehensive characterization of the surface and electronic properties of nanograting patterns on a silicon substrate using SEM, EDX, AFM, and XPS techniques. SEM images confirmed well-shaped and periodic nanograting patterns with determined depths (10 nm, 20 nm, or 30 nm) created by the laser interferometry lithography process. EDX elemental mapping confirmed that the surface of the patterns was predominantly silicon, with no significant contaminants such as oxygen or carbon present. AFM topography revealed a uniform surface roughness of up to 5 nm and well-aligned periodic patterns. XPS surface composition spectra, obtained after reactive etching, indicated no metal oxide formation or organic contamination and a clear Si spectrum. XPS scans for low binding energy (0–20 eV) were recorded to extract the valence band (VB) of the patterned surface for three different indent depths. The valence band offset from the valence band edge (E<sub>f</sub>-E<sub>v</sub>) was calculated to be 0.2 eV for 10 nm, 0.8 eV for 20 nm, and 0.4 eV for 30 nm indents, suggesting that a 20 nm indent depth provided the highest VB offset and thus was the preferred depth to obtain enhanced conductivity of the patterned surface. The comprehensive analysis highlighted the optimal indent depth for improved surface conductivity of nanograting-patterned silicon substrates.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11082-025-08106-2.pdf","citationCount":"0","resultStr":"{\"title\":\"SEM, EDX, AFM, and XPS analysis of surface microstructure and chemical composition of nanograting patterns on silicon substrates\",\"authors\":\"Nima E. Gorji,&nbsp;Agnieszka Pieniążek,&nbsp;Alexandru Iancu,&nbsp;Malgorzata Norek,&nbsp;Christophe Couteau,&nbsp;Regis Deturche,&nbsp;Avtandil Tavkhelidze,&nbsp;Amiran Bibilashvili,&nbsp;Larissa Jangidze\",\"doi\":\"10.1007/s11082-025-08106-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study conducted a comprehensive characterization of the surface and electronic properties of nanograting patterns on a silicon substrate using SEM, EDX, AFM, and XPS techniques. SEM images confirmed well-shaped and periodic nanograting patterns with determined depths (10 nm, 20 nm, or 30 nm) created by the laser interferometry lithography process. EDX elemental mapping confirmed that the surface of the patterns was predominantly silicon, with no significant contaminants such as oxygen or carbon present. AFM topography revealed a uniform surface roughness of up to 5 nm and well-aligned periodic patterns. XPS surface composition spectra, obtained after reactive etching, indicated no metal oxide formation or organic contamination and a clear Si spectrum. XPS scans for low binding energy (0–20 eV) were recorded to extract the valence band (VB) of the patterned surface for three different indent depths. The valence band offset from the valence band edge (E<sub>f</sub>-E<sub>v</sub>) was calculated to be 0.2 eV for 10 nm, 0.8 eV for 20 nm, and 0.4 eV for 30 nm indents, suggesting that a 20 nm indent depth provided the highest VB offset and thus was the preferred depth to obtain enhanced conductivity of the patterned surface. The comprehensive analysis highlighted the optimal indent depth for improved surface conductivity of nanograting-patterned silicon substrates.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"57 4\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11082-025-08106-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-025-08106-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08106-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用SEM, EDX, AFM和XPS技术对硅衬底上纳米光栅图案的表面和电子特性进行了全面的表征。扫描电镜图像证实了激光干涉光刻工艺产生的具有确定深度(10 nm, 20 nm或30 nm)的形状良好的周期性纳米光栅图案。EDX元素映射证实,图案的表面主要是硅,没有明显的污染物,如氧或碳的存在。AFM形貌显示均匀的表面粗糙度高达5 nm和排列良好的周期性图案。反应蚀刻后得到的XPS表面成分光谱显示,无金属氧化物形成或有机污染,且Si光谱清晰。记录了低结合能(0-20 eV)的XPS扫描,提取了三种不同凹痕深度下图案表面的价带(VB)。从价带边缘的价带偏移(Ef-Ev)计算得到,10 nm的压痕为0.2 eV, 20 nm为0.8 eV, 30 nm为0.4 eV,这表明20 nm的压痕深度提供了最高的VB偏移,因此是获得增强电导率的首选深度。综合分析指出了提高纳米光栅硅衬底表面导电性的最佳压痕深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SEM, EDX, AFM, and XPS analysis of surface microstructure and chemical composition of nanograting patterns on silicon substrates

This study conducted a comprehensive characterization of the surface and electronic properties of nanograting patterns on a silicon substrate using SEM, EDX, AFM, and XPS techniques. SEM images confirmed well-shaped and periodic nanograting patterns with determined depths (10 nm, 20 nm, or 30 nm) created by the laser interferometry lithography process. EDX elemental mapping confirmed that the surface of the patterns was predominantly silicon, with no significant contaminants such as oxygen or carbon present. AFM topography revealed a uniform surface roughness of up to 5 nm and well-aligned periodic patterns. XPS surface composition spectra, obtained after reactive etching, indicated no metal oxide formation or organic contamination and a clear Si spectrum. XPS scans for low binding energy (0–20 eV) were recorded to extract the valence band (VB) of the patterned surface for three different indent depths. The valence band offset from the valence band edge (Ef-Ev) was calculated to be 0.2 eV for 10 nm, 0.8 eV for 20 nm, and 0.4 eV for 30 nm indents, suggesting that a 20 nm indent depth provided the highest VB offset and thus was the preferred depth to obtain enhanced conductivity of the patterned surface. The comprehensive analysis highlighted the optimal indent depth for improved surface conductivity of nanograting-patterned silicon substrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信