Yu. G. Maksimova, E. V. Shklyaeva, E. V. Pyankova, O. M. Smolentseva, U. A. Trushina, A. Yu. Maksimov
{"title":"多壁碳纳米管的功能化及其在纳米生物催化中的应用","authors":"Yu. G. Maksimova, E. V. Shklyaeva, E. V. Pyankova, O. M. Smolentseva, U. A. Trushina, A. Yu. Maksimov","doi":"10.1134/S263516762460247X","DOIUrl":null,"url":null,"abstract":"<p>Multi-walled carbon nanotubes (MWCNTs) are functionalized with –OH, –SH, –NH<sub>2</sub>, and (3‑glycidyloxypropyl)trimethoxysilane (GLYMO) groups. The enzymatic activity of nanobiocatalysts prepared on the basis of amidase and nitrile hydratase isolated from the cells of the proteobacterium <i>Alcaligenes faecalis</i> 2 and the actinobacterium <i>Rhodococcus ruber</i> gt 1, respectively, and adsorbed on the functionalized MWCNTs (fMWCNTs), is determined. Also, nanobiocatalysts are prepared by aggregating bacterial cells with fMWCNTs; the value of cell aggregation and the manifestation of their enzymatic activity are determined. It is determined that <i>R. ruber</i> gt 1 cells aggregate with all carbon nanomaterials within the range of 16–70 mg/g, and for <i>A. faecalis</i> 2 cells, within the range of 4–84 mg/g. The smallest number of cells are bound to MWCNT–GLYMO, while the high enzymatic activity of the aggregates is retained. Aggregates of <i>A. faecalis</i> 2 with MWCNT–SH exhibit amidase activity exceeding that of native cells. Amidase and nitrile hydratase are bound to nanomaterials to a much lesser extent (no more than 1.7 mg/g). The effect of fMWCNTs on bacterial biofilm formation is studied and a decrease in the total biomass of <i>A. faecalis</i> 2 biofilms, as well as the metabolic activity of their cells, is shown, especially in the presence of MWCNTs-SH and MWCNTs-GLYMO. At the same time, biofilm formation by <i>R. ruber</i> gt 1 in the presence of fMWCNTs increases. Nanobiocatalysts have prospects for practical use due to the advantages of the immobilization of enzymes and microbial cells, as well as a high dispersity and high active surface area of the material.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"929 - 936"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Functionalization of Multi-Walled Carbon Nanotubes and Their Application in Nanobiocatalysis\",\"authors\":\"Yu. G. Maksimova, E. V. Shklyaeva, E. V. Pyankova, O. M. Smolentseva, U. A. Trushina, A. Yu. Maksimov\",\"doi\":\"10.1134/S263516762460247X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-walled carbon nanotubes (MWCNTs) are functionalized with –OH, –SH, –NH<sub>2</sub>, and (3‑glycidyloxypropyl)trimethoxysilane (GLYMO) groups. The enzymatic activity of nanobiocatalysts prepared on the basis of amidase and nitrile hydratase isolated from the cells of the proteobacterium <i>Alcaligenes faecalis</i> 2 and the actinobacterium <i>Rhodococcus ruber</i> gt 1, respectively, and adsorbed on the functionalized MWCNTs (fMWCNTs), is determined. Also, nanobiocatalysts are prepared by aggregating bacterial cells with fMWCNTs; the value of cell aggregation and the manifestation of their enzymatic activity are determined. It is determined that <i>R. ruber</i> gt 1 cells aggregate with all carbon nanomaterials within the range of 16–70 mg/g, and for <i>A. faecalis</i> 2 cells, within the range of 4–84 mg/g. The smallest number of cells are bound to MWCNT–GLYMO, while the high enzymatic activity of the aggregates is retained. Aggregates of <i>A. faecalis</i> 2 with MWCNT–SH exhibit amidase activity exceeding that of native cells. Amidase and nitrile hydratase are bound to nanomaterials to a much lesser extent (no more than 1.7 mg/g). The effect of fMWCNTs on bacterial biofilm formation is studied and a decrease in the total biomass of <i>A. faecalis</i> 2 biofilms, as well as the metabolic activity of their cells, is shown, especially in the presence of MWCNTs-SH and MWCNTs-GLYMO. At the same time, biofilm formation by <i>R. ruber</i> gt 1 in the presence of fMWCNTs increases. Nanobiocatalysts have prospects for practical use due to the advantages of the immobilization of enzymes and microbial cells, as well as a high dispersity and high active surface area of the material.</p>\",\"PeriodicalId\":716,\"journal\":{\"name\":\"Nanotechnologies in Russia\",\"volume\":\"19 6\",\"pages\":\"929 - 936\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnologies in Russia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S263516762460247X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S263516762460247X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
On the Functionalization of Multi-Walled Carbon Nanotubes and Their Application in Nanobiocatalysis
Multi-walled carbon nanotubes (MWCNTs) are functionalized with –OH, –SH, –NH2, and (3‑glycidyloxypropyl)trimethoxysilane (GLYMO) groups. The enzymatic activity of nanobiocatalysts prepared on the basis of amidase and nitrile hydratase isolated from the cells of the proteobacterium Alcaligenes faecalis 2 and the actinobacterium Rhodococcus ruber gt 1, respectively, and adsorbed on the functionalized MWCNTs (fMWCNTs), is determined. Also, nanobiocatalysts are prepared by aggregating bacterial cells with fMWCNTs; the value of cell aggregation and the manifestation of their enzymatic activity are determined. It is determined that R. ruber gt 1 cells aggregate with all carbon nanomaterials within the range of 16–70 mg/g, and for A. faecalis 2 cells, within the range of 4–84 mg/g. The smallest number of cells are bound to MWCNT–GLYMO, while the high enzymatic activity of the aggregates is retained. Aggregates of A. faecalis 2 with MWCNT–SH exhibit amidase activity exceeding that of native cells. Amidase and nitrile hydratase are bound to nanomaterials to a much lesser extent (no more than 1.7 mg/g). The effect of fMWCNTs on bacterial biofilm formation is studied and a decrease in the total biomass of A. faecalis 2 biofilms, as well as the metabolic activity of their cells, is shown, especially in the presence of MWCNTs-SH and MWCNTs-GLYMO. At the same time, biofilm formation by R. ruber gt 1 in the presence of fMWCNTs increases. Nanobiocatalysts have prospects for practical use due to the advantages of the immobilization of enzymes and microbial cells, as well as a high dispersity and high active surface area of the material.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.