多壁碳纳米管的功能化及其在纳米生物催化中的应用

IF 0.8 Q3 Engineering
Yu. G. Maksimova, E. V. Shklyaeva, E. V. Pyankova, O. M. Smolentseva, U. A. Trushina, A. Yu. Maksimov
{"title":"多壁碳纳米管的功能化及其在纳米生物催化中的应用","authors":"Yu. G. Maksimova,&nbsp;E. V. Shklyaeva,&nbsp;E. V. Pyankova,&nbsp;O. M. Smolentseva,&nbsp;U. A. Trushina,&nbsp;A. Yu. Maksimov","doi":"10.1134/S263516762460247X","DOIUrl":null,"url":null,"abstract":"<p>Multi-walled carbon nanotubes (MWCNTs) are functionalized with –OH, –SH, –NH<sub>2</sub>, and (3‑glycidyloxypropyl)trimethoxysilane (GLYMO) groups. The enzymatic activity of nanobiocatalysts prepared on the basis of amidase and nitrile hydratase isolated from the cells of the proteobacterium <i>Alcaligenes faecalis</i> 2 and the actinobacterium <i>Rhodococcus ruber</i> gt 1, respectively, and adsorbed on the functionalized MWCNTs (fMWCNTs), is determined. Also, nanobiocatalysts are prepared by aggregating bacterial cells with fMWCNTs; the value of cell aggregation and the manifestation of their enzymatic activity are determined. It is determined that <i>R. ruber</i> gt 1 cells aggregate with all carbon nanomaterials within the range of 16–70 mg/g, and for <i>A. faecalis</i> 2 cells, within the range of 4–84 mg/g. The smallest number of cells are bound to MWCNT–GLYMO, while the high enzymatic activity of the aggregates is retained. Aggregates of <i>A. faecalis</i> 2 with MWCNT–SH exhibit amidase activity exceeding that of native cells. Amidase and nitrile hydratase are bound to nanomaterials to a much lesser extent (no more than 1.7 mg/g). The effect of fMWCNTs on bacterial biofilm formation is studied and a decrease in the total biomass of <i>A. faecalis</i> 2 biofilms, as well as the metabolic activity of their cells, is shown, especially in the presence of MWCNTs-SH and MWCNTs-GLYMO. At the same time, biofilm formation by <i>R. ruber</i> gt 1 in the presence of fMWCNTs increases. Nanobiocatalysts have prospects for practical use due to the advantages of the immobilization of enzymes and microbial cells, as well as a high dispersity and high active surface area of the material.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"929 - 936"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Functionalization of Multi-Walled Carbon Nanotubes and Their Application in Nanobiocatalysis\",\"authors\":\"Yu. G. Maksimova,&nbsp;E. V. Shklyaeva,&nbsp;E. V. Pyankova,&nbsp;O. M. Smolentseva,&nbsp;U. A. Trushina,&nbsp;A. Yu. Maksimov\",\"doi\":\"10.1134/S263516762460247X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-walled carbon nanotubes (MWCNTs) are functionalized with –OH, –SH, –NH<sub>2</sub>, and (3‑glycidyloxypropyl)trimethoxysilane (GLYMO) groups. The enzymatic activity of nanobiocatalysts prepared on the basis of amidase and nitrile hydratase isolated from the cells of the proteobacterium <i>Alcaligenes faecalis</i> 2 and the actinobacterium <i>Rhodococcus ruber</i> gt 1, respectively, and adsorbed on the functionalized MWCNTs (fMWCNTs), is determined. Also, nanobiocatalysts are prepared by aggregating bacterial cells with fMWCNTs; the value of cell aggregation and the manifestation of their enzymatic activity are determined. It is determined that <i>R. ruber</i> gt 1 cells aggregate with all carbon nanomaterials within the range of 16–70 mg/g, and for <i>A. faecalis</i> 2 cells, within the range of 4–84 mg/g. The smallest number of cells are bound to MWCNT–GLYMO, while the high enzymatic activity of the aggregates is retained. Aggregates of <i>A. faecalis</i> 2 with MWCNT–SH exhibit amidase activity exceeding that of native cells. Amidase and nitrile hydratase are bound to nanomaterials to a much lesser extent (no more than 1.7 mg/g). The effect of fMWCNTs on bacterial biofilm formation is studied and a decrease in the total biomass of <i>A. faecalis</i> 2 biofilms, as well as the metabolic activity of their cells, is shown, especially in the presence of MWCNTs-SH and MWCNTs-GLYMO. At the same time, biofilm formation by <i>R. ruber</i> gt 1 in the presence of fMWCNTs increases. Nanobiocatalysts have prospects for practical use due to the advantages of the immobilization of enzymes and microbial cells, as well as a high dispersity and high active surface area of the material.</p>\",\"PeriodicalId\":716,\"journal\":{\"name\":\"Nanotechnologies in Russia\",\"volume\":\"19 6\",\"pages\":\"929 - 936\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnologies in Russia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S263516762460247X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S263516762460247X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

多壁碳纳米管(MWCNTs)被-OH、-SH、-NH2和(3 -缩水甘油酯氧丙基)三甲氧基硅烷(GLYMO)基功能化。测定了从粪碱性变形杆菌2和放线菌橡胶红球菌gt 1细胞中分离的酰胺酶和腈水合酶制备的纳米生物催化剂吸附在功能化的MWCNTs (fMWCNTs)上的酶活性。此外,纳米生物催化剂是通过聚集细菌细胞与fMWCNTs制备的;测定了细胞聚集值及其酶活性的表现。结果表明,橡胶树1细胞在16 ~ 70 mg/g范围内与所有碳纳米材料聚集,粪芽孢杆菌2细胞在4 ~ 84 mg/g范围内与所有碳纳米材料聚集。最小数量的细胞与MWCNT-GLYMO结合,而聚集体的高酶活性被保留。携带MWCNT-SH的粪芽孢杆菌2的聚集体表现出超过天然细胞的酰胺酶活性。酰胺酶和腈水合酶与纳米材料的结合程度要小得多(不超过1.7 mg/g)。研究了fMWCNTs对细菌生物膜形成的影响,并显示了a . faecalis 2生物膜的总生物量及其细胞代谢活性的降低,特别是在MWCNTs-SH和MWCNTs-GLYMO存在的情况下。同时,R. ruber gt 1在fMWCNTs存在下形成的生物膜增加。纳米生物催化剂具有固定化酶和微生物细胞的优点,以及材料的高分散性和高活性表面积,具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Functionalization of Multi-Walled Carbon Nanotubes and Their Application in Nanobiocatalysis

On the Functionalization of Multi-Walled Carbon Nanotubes and Their Application in Nanobiocatalysis

Multi-walled carbon nanotubes (MWCNTs) are functionalized with –OH, –SH, –NH2, and (3‑glycidyloxypropyl)trimethoxysilane (GLYMO) groups. The enzymatic activity of nanobiocatalysts prepared on the basis of amidase and nitrile hydratase isolated from the cells of the proteobacterium Alcaligenes faecalis 2 and the actinobacterium Rhodococcus ruber gt 1, respectively, and adsorbed on the functionalized MWCNTs (fMWCNTs), is determined. Also, nanobiocatalysts are prepared by aggregating bacterial cells with fMWCNTs; the value of cell aggregation and the manifestation of their enzymatic activity are determined. It is determined that R. ruber gt 1 cells aggregate with all carbon nanomaterials within the range of 16–70 mg/g, and for A. faecalis 2 cells, within the range of 4–84 mg/g. The smallest number of cells are bound to MWCNT–GLYMO, while the high enzymatic activity of the aggregates is retained. Aggregates of A. faecalis 2 with MWCNT–SH exhibit amidase activity exceeding that of native cells. Amidase and nitrile hydratase are bound to nanomaterials to a much lesser extent (no more than 1.7 mg/g). The effect of fMWCNTs on bacterial biofilm formation is studied and a decrease in the total biomass of A. faecalis 2 biofilms, as well as the metabolic activity of their cells, is shown, especially in the presence of MWCNTs-SH and MWCNTs-GLYMO. At the same time, biofilm formation by R. ruber gt 1 in the presence of fMWCNTs increases. Nanobiocatalysts have prospects for practical use due to the advantages of the immobilization of enzymes and microbial cells, as well as a high dispersity and high active surface area of the material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnologies in Russia
Nanotechnologies in Russia NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信