纳米材料在医学生物传感器中的应用

IF 0.8 Q3 Engineering
Y. V. Plekhanova, S. E. Tarasov, A. N. Reshetilov
{"title":"纳米材料在医学生物传感器中的应用","authors":"Y. V. Plekhanova,&nbsp;S. E. Tarasov,&nbsp;A. N. Reshetilov","doi":"10.1134/S2635167624602353","DOIUrl":null,"url":null,"abstract":"<p>Biosensors have long been an integral part of analytical laboratory equipment. Some developments have already been commercialized and mass produced for field-test analysis. The best-known biosensors at the moment are those for glucose determination, which are both disposable and long lasting. The use of biosensors for the early diagnosis of diseases would bring medicine to a qualitatively new level, allowing for the more accurate detection of a disease and its individual stages, the adjustment of treatment, and the monitoring of various parameters and biochemical indicators of health in the process of both treatment and during sports training. New electrode modifications, the application of new nanomaterials, the development of new analysis schemes, and the miniaturization of signal processing devices significantly expands the analytical capabilities of the developed biosensors. This paper presents new directions in the development of biosensors for the determination of both traditional markers of the human physiological state (glucose, lactate, etc.) and infectious pathologies (viral, cancerous, etc. diseases), wearable and implantable devices, as well as combined devices for simultaneous diagnostics and drug delivery.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"879 - 886"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanomaterials in Biosensors for Medical Applications\",\"authors\":\"Y. V. Plekhanova,&nbsp;S. E. Tarasov,&nbsp;A. N. Reshetilov\",\"doi\":\"10.1134/S2635167624602353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biosensors have long been an integral part of analytical laboratory equipment. Some developments have already been commercialized and mass produced for field-test analysis. The best-known biosensors at the moment are those for glucose determination, which are both disposable and long lasting. The use of biosensors for the early diagnosis of diseases would bring medicine to a qualitatively new level, allowing for the more accurate detection of a disease and its individual stages, the adjustment of treatment, and the monitoring of various parameters and biochemical indicators of health in the process of both treatment and during sports training. New electrode modifications, the application of new nanomaterials, the development of new analysis schemes, and the miniaturization of signal processing devices significantly expands the analytical capabilities of the developed biosensors. This paper presents new directions in the development of biosensors for the determination of both traditional markers of the human physiological state (glucose, lactate, etc.) and infectious pathologies (viral, cancerous, etc. diseases), wearable and implantable devices, as well as combined devices for simultaneous diagnostics and drug delivery.</p>\",\"PeriodicalId\":716,\"journal\":{\"name\":\"Nanotechnologies in Russia\",\"volume\":\"19 6\",\"pages\":\"879 - 886\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnologies in Russia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2635167624602353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624602353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

生物传感器早已成为实验室分析设备的组成部分。一些研发成果已经商业化并大规模生产,用于现场测试分析。目前最著名的生物传感器是用于葡萄糖测定的传感器,这种传感器既可一次性使用,又可长期使用。使用生物传感器进行疾病的早期诊断将使医学达到一个新的水平,可以更准确地检测疾病及其各个阶段,调整治疗方法,并在治疗过程中和体育训练期间监测健康的各种参数和生化指标。新的电极改造、新纳米材料的应用、新分析方案的开发以及信号处理设备的微型化,都极大地扩展了所开发生物传感器的分析能力。本文介绍了用于测定人体生理状态传统标记物(葡萄糖、乳酸盐等)和传染性病症(病毒、癌症等疾病)的生物传感器、可穿戴和植入式设备以及用于同时诊断和给药的组合设备的发展新方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanomaterials in Biosensors for Medical Applications

Biosensors have long been an integral part of analytical laboratory equipment. Some developments have already been commercialized and mass produced for field-test analysis. The best-known biosensors at the moment are those for glucose determination, which are both disposable and long lasting. The use of biosensors for the early diagnosis of diseases would bring medicine to a qualitatively new level, allowing for the more accurate detection of a disease and its individual stages, the adjustment of treatment, and the monitoring of various parameters and biochemical indicators of health in the process of both treatment and during sports training. New electrode modifications, the application of new nanomaterials, the development of new analysis schemes, and the miniaturization of signal processing devices significantly expands the analytical capabilities of the developed biosensors. This paper presents new directions in the development of biosensors for the determination of both traditional markers of the human physiological state (glucose, lactate, etc.) and infectious pathologies (viral, cancerous, etc. diseases), wearable and implantable devices, as well as combined devices for simultaneous diagnostics and drug delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnologies in Russia
Nanotechnologies in Russia NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信