Sung Min Lee, Keun Hwan Oh, Hwan Yeop Jeong, Duk Man Yu, Tae-Ho Kim
{"title":"高效单体再生燃料电池多孔输运层的亲水性调控","authors":"Sung Min Lee, Keun Hwan Oh, Hwan Yeop Jeong, Duk Man Yu, Tae-Ho Kim","doi":"10.1007/s40820-025-01684-6","DOIUrl":null,"url":null,"abstract":"<div><div>\n <span>AbstractSection</span>\n Highlights\n <ul>\n <li>\n <p>Novel amphiphilic patterned titanium porous transport layers (PTLs) significantly enhance the round-trip efficiency of unitized regenerative fuel cells (URFCs), achieving an impressive round-trip efficiency of 25.7% at a current density of 2 A cm<sup>-2</sup>.</p>\n </li>\n <li>\n <p>The serpentine configuration of the patterned PTL excels in both fuel cell (FC) and water electrolyzer modes, resulting in a sevenfold increase in current density in FC mode compared to URFCs using hydrophilic pristine Ti PTLs.</p>\n </li>\n </ul>\n \n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01684-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Regulating Water Transport Paths on Porous Transport Layer by Hydrophilic Patterning for Highly Efficient Unitized Regenerative Fuel Cells\",\"authors\":\"Sung Min Lee, Keun Hwan Oh, Hwan Yeop Jeong, Duk Man Yu, Tae-Ho Kim\",\"doi\":\"10.1007/s40820-025-01684-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>\\n <span>AbstractSection</span>\\n Highlights\\n <ul>\\n <li>\\n <p>Novel amphiphilic patterned titanium porous transport layers (PTLs) significantly enhance the round-trip efficiency of unitized regenerative fuel cells (URFCs), achieving an impressive round-trip efficiency of 25.7% at a current density of 2 A cm<sup>-2</sup>.</p>\\n </li>\\n <li>\\n <p>The serpentine configuration of the patterned PTL excels in both fuel cell (FC) and water electrolyzer modes, resulting in a sevenfold increase in current density in FC mode compared to URFCs using hydrophilic pristine Ti PTLs.</p>\\n </li>\\n </ul>\\n \\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01684-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01684-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01684-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
摘要:新型两亲型钛多孔传输层(PTLs)显著提高了单体再生燃料电池(urfc)的往返效率,在电流密度为2 a cm-2的情况下,往返效率达到了25.7%。在燃料电池(FC)和水电解槽模式下,图案PTL的蛇形结构都表现出色,与使用亲水原始Ti PTL的urfc相比,FC模式下的电流密度增加了7倍。
Regulating Water Transport Paths on Porous Transport Layer by Hydrophilic Patterning for Highly Efficient Unitized Regenerative Fuel Cells
AbstractSection
Highlights
Novel amphiphilic patterned titanium porous transport layers (PTLs) significantly enhance the round-trip efficiency of unitized regenerative fuel cells (URFCs), achieving an impressive round-trip efficiency of 25.7% at a current density of 2 A cm-2.
The serpentine configuration of the patterned PTL excels in both fuel cell (FC) and water electrolyzer modes, resulting in a sevenfold increase in current density in FC mode compared to URFCs using hydrophilic pristine Ti PTLs.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.