静电力显微镜法测定单个红细胞及其细胞膜的静态介电常数

IF 0.8 Q3 Engineering
N. A. Davletkildeev, D. V. Sokolov, E. Yu. Mosur, I. A. Lobov
{"title":"静电力显微镜法测定单个红细胞及其细胞膜的静态介电常数","authors":"N. A. Davletkildeev,&nbsp;D. V. Sokolov,&nbsp;E. Yu. Mosur,&nbsp;I. A. Lobov","doi":"10.1134/S2635167624602328","DOIUrl":null,"url":null,"abstract":"<p>The results of determination of the static permittivity of individual red blood cells (RBCs) and their membranes by dc-electrostatic force microscopy are presented. This method is based on a quantitative analysis of the cross-sectional profiles of experimental electrostatic images. A model of electrostatic interaction between the cantilever tip and a biological cell of disk shape is proposed. The obtained permittivity of individual RBCs agrees well with published data. Calculation of the permittivity by the effective medium approximation for RBCs is performed for comparison with the mean value of the RBC permittivity of our model.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"1061 - 1067"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the Static Permittivity of Individual Red Blood Cells and Their Membranes by Electrostatic Force Microscopy\",\"authors\":\"N. A. Davletkildeev,&nbsp;D. V. Sokolov,&nbsp;E. Yu. Mosur,&nbsp;I. A. Lobov\",\"doi\":\"10.1134/S2635167624602328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results of determination of the static permittivity of individual red blood cells (RBCs) and their membranes by dc-electrostatic force microscopy are presented. This method is based on a quantitative analysis of the cross-sectional profiles of experimental electrostatic images. A model of electrostatic interaction between the cantilever tip and a biological cell of disk shape is proposed. The obtained permittivity of individual RBCs agrees well with published data. Calculation of the permittivity by the effective medium approximation for RBCs is performed for comparison with the mean value of the RBC permittivity of our model.</p>\",\"PeriodicalId\":716,\"journal\":{\"name\":\"Nanotechnologies in Russia\",\"volume\":\"19 6\",\"pages\":\"1061 - 1067\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnologies in Russia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2635167624602328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624602328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了用直流静电力显微镜测定单个红细胞及其膜的静态介电常数的结果。该方法是基于对实验静电图像横截面的定量分析。提出了悬臂顶端与圆盘状生物细胞之间静电相互作用的模型。所得的单个红细胞的介电常数与已发表的数据吻合得很好。通过有效介质近似计算红细胞的介电常数,并与我们模型的红细胞介电常数平均值进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Determination of the Static Permittivity of Individual Red Blood Cells and Their Membranes by Electrostatic Force Microscopy

Determination of the Static Permittivity of Individual Red Blood Cells and Their Membranes by Electrostatic Force Microscopy

The results of determination of the static permittivity of individual red blood cells (RBCs) and their membranes by dc-electrostatic force microscopy are presented. This method is based on a quantitative analysis of the cross-sectional profiles of experimental electrostatic images. A model of electrostatic interaction between the cantilever tip and a biological cell of disk shape is proposed. The obtained permittivity of individual RBCs agrees well with published data. Calculation of the permittivity by the effective medium approximation for RBCs is performed for comparison with the mean value of the RBC permittivity of our model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnologies in Russia
Nanotechnologies in Russia NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信