Akhiri Zannat , Isaac Eason , Benjamin Wylie , Robin D. Rogers , Paula Berton , Julia L. Shamshina
{"title":"蘑菇中几丁质分离技术的比较分析:迈向高纯度生物聚合物的可持续生产","authors":"Akhiri Zannat , Isaac Eason , Benjamin Wylie , Robin D. Rogers , Paula Berton , Julia L. Shamshina","doi":"10.1039/d4gc06388k","DOIUrl":null,"url":null,"abstract":"<div><div>Chitin, an abundant and versatile biopolymer, is widely used across industries such as biomedicine, agriculture, and materials science. Traditionally sourced from crustacean waste, its extraction poses environmental and allergenic challenges, driving the exploration of alternative sources. Fungal biomass, particularly from white mushrooms (<em>Agaricus</em> bisporus), offers a renewable, hypoallergenic, and non-animal alternative, but its complex cell wall structure demands innovative extraction techniques. This study compares traditional alkaline pulping with environmentally-conscious methods, including ionic liquids 1-ethyl-3-methylimidazolium acetate ([C<sub>2</sub>mim][OAc]) and 1-butyl-3-methylimidazolium hydrogen sulfate ([C<sub>4</sub>mim][HSO<sub>4</sub>]), and a deep eutectic solvent made of lactic acid and choline chloride (LA : [Cho]Cl), for chitin isolation from mushroom biomass. Results indicate that thermal [C<sub>2</sub>mim][OAc] and extended NaOH pulping produced isolates with superior purity (77%), retaining the structural integrity of α-chitin. The produced fibers demonstrated mechanical properties of fungal chitin comparable to crustacean-extracted chitin, highlighting the viability of fungal sources for high-value applications. By addressing critical challenges in fungal chitin extraction, this work advances the understanding of eco-friendly methods and their potential for scalability. The ability to source chitin from mushrooms rather than from traditional animal-based sources like crustaceans is a game-changer for ethical and sustainable biomass to C-based products industries. In addition, the findings underscore fungal biomass as a valuable yet underutilized resource in the context of carbon-efficient biomass utilization. Mushrooms grow on various agricultural and industrial wastes, have minimal environmental impact, and their cultivation emits significantly fewer greenhouse gases compared to other agri- and aquacultural processes. In addition, the presented extraction method using [C<sub>2</sub>mim][OAc] reduces chemical waste compared to traditional alkali-based methods for obtaining fungal chitin. Integrating this type of chitin into numerous applications reduces reliance on traditional supply chains and reinforces a circular economy approach.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 12","pages":"Pages 3217-3233"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of chitin isolation techniques from mushrooms: toward sustainable production of high-purity biopolymer†\",\"authors\":\"Akhiri Zannat , Isaac Eason , Benjamin Wylie , Robin D. Rogers , Paula Berton , Julia L. Shamshina\",\"doi\":\"10.1039/d4gc06388k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chitin, an abundant and versatile biopolymer, is widely used across industries such as biomedicine, agriculture, and materials science. Traditionally sourced from crustacean waste, its extraction poses environmental and allergenic challenges, driving the exploration of alternative sources. Fungal biomass, particularly from white mushrooms (<em>Agaricus</em> bisporus), offers a renewable, hypoallergenic, and non-animal alternative, but its complex cell wall structure demands innovative extraction techniques. This study compares traditional alkaline pulping with environmentally-conscious methods, including ionic liquids 1-ethyl-3-methylimidazolium acetate ([C<sub>2</sub>mim][OAc]) and 1-butyl-3-methylimidazolium hydrogen sulfate ([C<sub>4</sub>mim][HSO<sub>4</sub>]), and a deep eutectic solvent made of lactic acid and choline chloride (LA : [Cho]Cl), for chitin isolation from mushroom biomass. Results indicate that thermal [C<sub>2</sub>mim][OAc] and extended NaOH pulping produced isolates with superior purity (77%), retaining the structural integrity of α-chitin. The produced fibers demonstrated mechanical properties of fungal chitin comparable to crustacean-extracted chitin, highlighting the viability of fungal sources for high-value applications. By addressing critical challenges in fungal chitin extraction, this work advances the understanding of eco-friendly methods and their potential for scalability. The ability to source chitin from mushrooms rather than from traditional animal-based sources like crustaceans is a game-changer for ethical and sustainable biomass to C-based products industries. In addition, the findings underscore fungal biomass as a valuable yet underutilized resource in the context of carbon-efficient biomass utilization. Mushrooms grow on various agricultural and industrial wastes, have minimal environmental impact, and their cultivation emits significantly fewer greenhouse gases compared to other agri- and aquacultural processes. In addition, the presented extraction method using [C<sub>2</sub>mim][OAc] reduces chemical waste compared to traditional alkali-based methods for obtaining fungal chitin. Integrating this type of chitin into numerous applications reduces reliance on traditional supply chains and reinforces a circular economy approach.</div></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"27 12\",\"pages\":\"Pages 3217-3233\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926225001323\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225001323","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative analysis of chitin isolation techniques from mushrooms: toward sustainable production of high-purity biopolymer†
Chitin, an abundant and versatile biopolymer, is widely used across industries such as biomedicine, agriculture, and materials science. Traditionally sourced from crustacean waste, its extraction poses environmental and allergenic challenges, driving the exploration of alternative sources. Fungal biomass, particularly from white mushrooms (Agaricus bisporus), offers a renewable, hypoallergenic, and non-animal alternative, but its complex cell wall structure demands innovative extraction techniques. This study compares traditional alkaline pulping with environmentally-conscious methods, including ionic liquids 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) and 1-butyl-3-methylimidazolium hydrogen sulfate ([C4mim][HSO4]), and a deep eutectic solvent made of lactic acid and choline chloride (LA : [Cho]Cl), for chitin isolation from mushroom biomass. Results indicate that thermal [C2mim][OAc] and extended NaOH pulping produced isolates with superior purity (77%), retaining the structural integrity of α-chitin. The produced fibers demonstrated mechanical properties of fungal chitin comparable to crustacean-extracted chitin, highlighting the viability of fungal sources for high-value applications. By addressing critical challenges in fungal chitin extraction, this work advances the understanding of eco-friendly methods and their potential for scalability. The ability to source chitin from mushrooms rather than from traditional animal-based sources like crustaceans is a game-changer for ethical and sustainable biomass to C-based products industries. In addition, the findings underscore fungal biomass as a valuable yet underutilized resource in the context of carbon-efficient biomass utilization. Mushrooms grow on various agricultural and industrial wastes, have minimal environmental impact, and their cultivation emits significantly fewer greenhouse gases compared to other agri- and aquacultural processes. In addition, the presented extraction method using [C2mim][OAc] reduces chemical waste compared to traditional alkali-based methods for obtaining fungal chitin. Integrating this type of chitin into numerous applications reduces reliance on traditional supply chains and reinforces a circular economy approach.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.