Gerliz M. Gutiérrez-Finol , Aman Ullah , María González-Béjar , Alejandro Gaita-Ariño
{"title":"呼吁节俭建模:涉及分子自旋动力学的两个案例研究†‡","authors":"Gerliz M. Gutiérrez-Finol , Aman Ullah , María González-Béjar , Alejandro Gaita-Ariño","doi":"10.1039/d4gc04900d","DOIUrl":null,"url":null,"abstract":"<div><div>As scientists living through a climate emergency, we have a responsibility to lead by example, or to at least be consistent with our understanding of the problem. This common goal of reducing the carbon footprint of our work can be approached through a variety of strategies. For theoreticians, this includes not only optimizing algorithms and improving computational efficiency but also adopting a frugal approach to modeling. Here we present and critically illustrate this principle. First, we compare two models of very different level of sophistication which nevertheless yield the same qualitative agreement with an experiment involving electric manipulation of molecular spin qubits while presenting a difference in cost of >4 orders of magnitude. As a second stage, an already minimalistic model of the potential use of single-ion magnets to implement a network of probabilistic p-bits, programmed in two different programming languages, is shown to present a difference in cost of a factor of ≃50. In both examples, the computationally expensive version of the model was the one that was published. As a community, we still have a lot of room for improvement in this direction.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 12","pages":"Pages 3167-3177"},"PeriodicalIF":9.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d4gc04900d?page=search","citationCount":"0","resultStr":"{\"title\":\"A call for frugal modelling: two case studies involving molecular spin dynamics†‡\",\"authors\":\"Gerliz M. Gutiérrez-Finol , Aman Ullah , María González-Béjar , Alejandro Gaita-Ariño\",\"doi\":\"10.1039/d4gc04900d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As scientists living through a climate emergency, we have a responsibility to lead by example, or to at least be consistent with our understanding of the problem. This common goal of reducing the carbon footprint of our work can be approached through a variety of strategies. For theoreticians, this includes not only optimizing algorithms and improving computational efficiency but also adopting a frugal approach to modeling. Here we present and critically illustrate this principle. First, we compare two models of very different level of sophistication which nevertheless yield the same qualitative agreement with an experiment involving electric manipulation of molecular spin qubits while presenting a difference in cost of >4 orders of magnitude. As a second stage, an already minimalistic model of the potential use of single-ion magnets to implement a network of probabilistic p-bits, programmed in two different programming languages, is shown to present a difference in cost of a factor of ≃50. In both examples, the computationally expensive version of the model was the one that was published. As a community, we still have a lot of room for improvement in this direction.</div></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"27 12\",\"pages\":\"Pages 3167-3177\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d4gc04900d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926225001360\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225001360","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A call for frugal modelling: two case studies involving molecular spin dynamics†‡
As scientists living through a climate emergency, we have a responsibility to lead by example, or to at least be consistent with our understanding of the problem. This common goal of reducing the carbon footprint of our work can be approached through a variety of strategies. For theoreticians, this includes not only optimizing algorithms and improving computational efficiency but also adopting a frugal approach to modeling. Here we present and critically illustrate this principle. First, we compare two models of very different level of sophistication which nevertheless yield the same qualitative agreement with an experiment involving electric manipulation of molecular spin qubits while presenting a difference in cost of >4 orders of magnitude. As a second stage, an already minimalistic model of the potential use of single-ion magnets to implement a network of probabilistic p-bits, programmed in two different programming languages, is shown to present a difference in cost of a factor of ≃50. In both examples, the computationally expensive version of the model was the one that was published. As a community, we still have a lot of room for improvement in this direction.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.